Spelling suggestions: "subject:"cartesian grids"" "subject:"cartesian vrids""
1 |
The discontinuous Galerkin method on Cartesian grids with embedded geometries: spectrum analysis and implementation for Euler equationsQin, Ruibin 11 September 2012 (has links)
In this thesis, we analyze theoretical properties of the discontinuous Galerkin method (DGM) and propose novel approaches to implementation with the aim to increase its efficiency. First, we derive explicit expressions for the eigenvalues (spectrum) of the discontinuous Galerkin spatial discretization applied to the linear advection equation. We show that the eigenvalues are related to the subdiagonal [p/p+1] Pade approximation of exp(-z) when the p-th degree basis functions are used.
Then, we extend the analysis to nonuniform meshes where both the size of elements and the composition of the mesh influence the spectrum. We show that the spectrum depends on the ratio of the size of the largest to the smallest cell as well as the number of cells of different types. We find that the spectrum grows linearly as a function of the proportion of small cells present in the mesh when the size of small cells is greater than some critical value. When the smallest cells are smaller than this critical value, the corresponding eigenvalues lie outside of the main spectral curve. Numerical examples on nonuniform meshes are presented to show the improvement on the time step restriction. In particular, this result can be used to improve the time step restriction on Cartesian grids.
Finally, we present a discontinuous Galerkin method for solutions of the Euler equations on Cartesian grids with embedded geometries. Cutting an embedded geometry out of the Cartesian grid creates cut cells, which are difficult to deal with for two reasons. One is the restrictive CFL number and the other is the integration on irregularly shaped cells. We use explicit time integration employing cell merging to avoid restrictively small time steps. We provide an algorithm for splitting complex cells into triangles and use standard quadrature rules on these for numerical integration. To avoid the loss of accuracy due to straight sided grids, we employ the curvature boundary conditions. We show that the proposed method is robust and high-order accurate.
|
2 |
The discontinuous Galerkin method on Cartesian grids with embedded geometries: spectrum analysis and implementation for Euler equationsQin, Ruibin 11 September 2012 (has links)
In this thesis, we analyze theoretical properties of the discontinuous Galerkin method (DGM) and propose novel approaches to implementation with the aim to increase its efficiency. First, we derive explicit expressions for the eigenvalues (spectrum) of the discontinuous Galerkin spatial discretization applied to the linear advection equation. We show that the eigenvalues are related to the subdiagonal [p/p+1] Pade approximation of exp(-z) when the p-th degree basis functions are used.
Then, we extend the analysis to nonuniform meshes where both the size of elements and the composition of the mesh influence the spectrum. We show that the spectrum depends on the ratio of the size of the largest to the smallest cell as well as the number of cells of different types. We find that the spectrum grows linearly as a function of the proportion of small cells present in the mesh when the size of small cells is greater than some critical value. When the smallest cells are smaller than this critical value, the corresponding eigenvalues lie outside of the main spectral curve. Numerical examples on nonuniform meshes are presented to show the improvement on the time step restriction. In particular, this result can be used to improve the time step restriction on Cartesian grids.
Finally, we present a discontinuous Galerkin method for solutions of the Euler equations on Cartesian grids with embedded geometries. Cutting an embedded geometry out of the Cartesian grid creates cut cells, which are difficult to deal with for two reasons. One is the restrictive CFL number and the other is the integration on irregularly shaped cells. We use explicit time integration employing cell merging to avoid restrictively small time steps. We provide an algorithm for splitting complex cells into triangles and use standard quadrature rules on these for numerical integration. To avoid the loss of accuracy due to straight sided grids, we employ the curvature boundary conditions. We show that the proposed method is robust and high-order accurate.
|
3 |
Contact problem modelling using the Cartesian grid Finite Element MethodNavarro Jiménez, José Manuel 29 July 2019 (has links)
Tesis por compendio / [ES] La interacción de contacto entre sólidos deformables es uno de los fenómenos más complejos en el ámbito de la mecánica computacional. La resolución de este problema requiere de algoritmos robustos para el tratamiento de no linealidades geométricas. El Método de Elementos Finitos (MEF) es uno de los más utilizados para el diseño de componentes mecánicos, incluyendo la solución de problemas de contacto. En este método el coste asociado al proceso de discretización (generación de malla) está directamente vinculado a la definición del contorno a modelar, lo cual dificulta la introducción en la simulación de superficies complejas, como las superficies NURBS, cada vez más utilizadas en el diseño de componentes.
Esta tesis está basada en el "Cartesian grid Finite Element Method" (cgFEM). En esta metodología, encuadrada en la categoría de métodos "Immersed Boundary", se extiende el problema a un dominio de aproximación (cuyo mallado es sencillo de generar) que contiene al dominio de análisis completamente en su interior. Al desvincular la discretización de la definición del contorno del problema se reduce drásticamente el coste de generación de malla. Es por ello que el método cgFEM es una herramienta adecuada para la resolución de problemas en los que es necesario modificar la geometría múltiples veces, como el problema de optimización de forma o la simulación de desgaste.
El método cgFEM permite también crear de manera automática y eficiente modelos de Elementos Finitos a partir de imágenes médicas. La introducción de restricciones de contacto habilitaría la posibilidad de considerar los diferentes estados de integración implante-tejido en procesos de optimización personalizada de implantes.
Así, en esta tesis se desarrolla una formulación para resolver problemas de contacto 3D con el método cgFEM, considerando tanto modelos de contacto sin fricción como problemas con rozamiento de Coulomb. La ausencia de nodos en el contorno en cgFEM impide la aplicación de métodos tradicionales para imponer las restricciones de contacto, por lo que se ha desarrollado una formulación estabilizada que hace uso de un campo de tensiones recuperado para asegurar la estabilidad del método. Para una mayor precisión de la solución, se ha introducido la definición analítica de las superficies en contacto en la formulación propuesta.
Además, se propone la mejora de la robustez de la metodología cgFEM en dos aspectos: el control del mal condicionamiento del problema numérico mediante un método estabilizado, y la mejora del campo de tensiones recuperado, utilizado en el proceso de estimación de error.
La metodología propuesta se ha validado a través de diversos ejemplos numéricos presentados en la tesis, mostrando el gran potencial de cgFEM en este tipo de problemas. / [CA] La interacció de contacte entre sòlids deformables és un dels fenòmens més complexos en l'àmbit de la mecànica computacional. La resolució d'este problema requerix d'algoritmes robustos per al tractament de no linealitats geomètriques. El Mètode dels Elements Finits (MEF) és un dels més utilitzats per al disseny de components mecànics, incloent la solució de problemes de contacte. En este mètode el cost associat al procés de discretització (generació de malla) està directament vinculat a la definició del contorn a modelar, la qual cosa dificulta la introducció en la simulació de superfícies complexes, com les superfícies NURBS, cada vegada més utilitzades en el disseny de components.
Esta tesi està basada en el "Cartesian grid Finite Element Method" (cgFEM). En esta metodologia, enquadrada en la categoria de mètodes "Immersed Boundary", s'estén el problema a un domini d'aproximació (el mallat del qual és senzill de generar) que conté al domini d'anàlisi completament en el seu interior. Al desvincular la discretització de la definició del contorn del problema es reduïx dràsticament el cost de generació de malla. És per això que el mètode cgFEM és una ferramenta adequada per a la resolució de problemes en què és necessari modificar la geometria múltiples vegades, com el problema d'optimització de forma o la simulació de desgast. El mètode cgFEM permet també crear de manera automàtica i eficient models d'Elements Finits a partir d'imatges mèdiques. La introducció de restriccions de contacte habilitaria la possibilitat de considerar els diferents estats d'integració implant-teixit en processos d'optimització personalitzada d'implants.
Així, en esta tesi es desenvolupa una formulació per a resoldre problemes de contacte 3D amb el mètode cgFEM, considerant tant models de contacte sense fricció com a problemes amb fregament de Coulomb. L'absència de nodes en el contorn en cgFEM impedix l'aplicació de mètodes tradicionals per a imposar les restriccions de contacte, per la qual cosa s'ha desenvolupat una formulació estabilitzada que fa ús d'un camp de tensions recuperat per a assegurar l'estabilitat del mètode. Per a una millor precisió de la solució, s'ha introduït la definició analítica de les superfícies en contacte en la formulació proposada.
A més, es proposa la millora de la robustesa de la metodologia cgFEM en dos aspectes: el control del mal condicionament del problema numèric per mitjà d'un mètode estabilitzat, i la millora del camp de tensions recuperat, utilitzat en el procés d'estimació d'error.
La metodologia proposada s'ha validat a través de diversos exemples numèrics presentats en la tesi, mostrant el gran potencial de cgFEM en este tipus de problemes. / [EN] The contact interaction between elastic solids is one of the most complex phenomena in the computational mechanics research field. The solution of such problem requires robust algorithms to treat the geometrical non-linearities characteristic of the contact constrains. The Finite Element Method (FE) has become one of the most popular options for the mechanical components design, including the solution of contact problems. In this method the computational cost of the generation of the discretization (mesh generation) is directly related to the complexity of the analysis domain, namely its boundary. This complicates the introduction in the numerical simulations of complex surfaces (for example NURBS), which are being increasingly used in the CAD industry.
This thesis is grounded on the Cartesian grid Finite Element Method (cgFEM). In this methodology, which belongs to the family of Immersed Boundary methods, the problem at hand is extended to an approximation domain which completely embeds the analysis domain, and its meshing is straightforward. The decoupling of the boundary definition and the discretization mesh results in a great reduction of the mesh generation's computational cost. Is for this reason that the cgFEM is a suitable tool for the solution of problems that require multiple geometry modifications, such as shape optimization problems or wear simulations.
The cgFEM is also capable of automatically generating FE models from medical images without the intermediate step of generating CAD entities. The introduction of the contact interaction would open the possibility to consider different states of the union between implant and living tissue for the design of optimized implants, even in a patient-specific process.
Hence, in this thesis a formulation for solving 3D contact problems with the cgFEM is presented, considering both frictionless and Coulomb's friction problems. The absence of nodes along the boundary in cgFEM prevents the enforcement of the contact constrains using the standard procedures. Thus, we develop a stabilized formulation that makes use of a recovered stress field, which ensures the stability of the method. The analytical definition of the contact surfaces (by means of NURBS) has been included in the proposed formulation in order to increase the accuracy of the solution.
In addition, the robustness of the cgFEM methodology is increased in this thesis in two different aspects: the control of the numerical problem's ill-conditioning by means of a stabilized method, and the enhancement of the stress recovered field, which is used in the error estimation procedure.
The proposed methodology has been validated through several numerical examples, showing the great potential of the cgFEM in these type of problems. / Navarro Jiménez, JM. (2019). Contact problem modelling using the Cartesian grid Finite Element Method [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124348 / Compendio
|
4 |
Viscous hypersonic flow physics predictions using unstructured Cartesian grid techniquesSekhar, Susheel Kumar 12 November 2012 (has links)
Aerothermodynamics is an integral component in the design and implementation of hypersonic transport systems. Accurate estimates of the aerodynamic forces and heat transfer rates are critical in trajectory analysis and for payload weight considerations. The present work seeks to investigate the ability of an unstructured Cartesian grid framework in modeling hypersonic viscous flows. The effectiveness of modeling viscous phenomena in hypersonic flows using the immersed boundary ghost cell methodology of this solver is analyzed.
The capacity of this framework to predict the surface physics in a hypersonic non-reacting environment is investigated. High velocity argon gas flows past a 2-D cylinder are simulated for a set of freestream conditions (Reynolds numbers), and impact of the grid cell sizes on the quality of the solution is evaluated. Additionally, the formulation is verified over a series of hypersonic Mach numbers for the flow past a hemisphere, and compared to experimental results and empirical estimates.
Next, a test case that involves flow separation and the interaction between a hypersonic shock wave and a boundary layer, and a separation bubble is investigated using various adaptive mesh refinement strategies. The immersed boundary ghost cell approach is tested with two temperature clipping strategies, and their impact on the overall solution accuracy and smoothness of the surface property predictions are compared.
Finally, species diffusion terms in the conservation equations, and collision cross-section based transport coefficients are installed, and hypersonic flows in thermochemical nonequilibrium environments are studied, and comparisons of the off-surface flow properties and the surface physics predictions are evaluated. First, a 2-D cylinder in a hypersonic reacting air flow is tested with an adiabatic wall boundary condition. Next, the same geometry is tested to evaluate the viscous chemistry prediction capability of the solver with an isothermal wall boundary condition, and to identify the strengths and weaknesses of the immersed boundary ghost cell methodology in computing convective heating rates in such an environment.
|
5 |
Structural Shape Optimization Based On The Use Of Cartesian GridsMarco Alacid, Onofre 06 July 2018 (has links)
Tesis por compendio / As ever more challenging designs are required in present-day industries, the traditional trial-and-error procedure frequently used for designing mechanical parts slows down the design process and yields suboptimal designs, so that new approaches are needed to obtain a competitive advantage. With the ascent of the Finite Element Method (FEM) in the engineering community in the 1970s, structural shape optimization arose as a promising area of application.
However, due to the iterative nature of shape optimization processes, the handling of large quantities of numerical models along with the approximated character of numerical methods may even dissuade the use of these techniques (or fail to exploit their full potential) because the development time of new products is becoming ever shorter.
This Thesis is concerned with the formulation of a 3D methodology based on the Cartesian-grid Finite Element Method (cgFEM) as a tool for efficient and robust numerical analysis. This methodology belongs to the category of embedded (or fictitious) domain discretization techniques in which the key concept is to extend the structural analysis problem to an easy-to-mesh approximation domain that encloses the physical domain boundary.
The use of Cartesian grids provides a natural platform for structural shape optimization because the numerical domain is separated from a physical model, which can easily be changed during the optimization procedure without altering the background discretization. Another advantage is the fact that mesh generation becomes a trivial task since the discretization of the numerical domain and its manipulation, in combination with an efficient hierarchical data structure, can be exploited to save computational effort.
However, these advantages are challenged by several numerical issues. Basically, the computational effort has moved from the use of expensive meshing algorithms towards the use of, for example, elaborate numerical integration schemes designed to capture the mismatch between the geometrical domain boundary and the embedding finite element mesh. To do this we used a stabilized formulation to impose boundary conditions and developed novel techniques to be able to capture the exact boundary representation of the models.
To complete the implementation of a structural shape optimization method an adjunct formulation is used for the differentiation of the design sensitivities required for gradient-based algorithms. The derivatives are not only the variables required for the process, but also compose a powerful tool for projecting information between different designs, or even projecting the information to create h-adapted meshes without going through a full h-adaptive refinement process.
The proposed improvements are reflected in the numerical examples included in this Thesis. These analyses clearly show the improved behavior of the cgFEM technology as regards numerical accuracy and computational efficiency, and consequently the suitability of the cgFEM approach for shape optimization or contact problems. / La competitividad en la industria actual impone la necesidad de generar nuevos y mejores diseños. El tradicional procedimiento de prueba y error, usado a menudo para el diseño de componentes mecánicos, ralentiza el proceso de diseño y produce diseños subóptimos, por lo que se necesitan nuevos enfoques para obtener una ventaja competitiva. Con el desarrollo del Método de los Elementos Finitos (MEF) en el campo de la ingeniería en la década de 1970, la optimización de forma estructural surgió como un área de aplicación prometedora.
El entorno industrial cada vez más exigente implica ciclos cada vez más cortos de desarrollo de nuevos productos. Por tanto, la naturaleza iterativa de los procesos de optimización de forma, que supone el análisis de gran cantidad de geometrías (para las se han de usar modelos numéricos de gran tamaño a fin de limitar el efecto de los errores intrínsecamente asociados a las técnicas numéricas), puede incluso disuadir del uso de estas técnicas.
Esta Tesis se centra en la formulación de una metodología 3D basada en el Cartesian-grid Finite Element Method (cgFEM) como herramienta para un análisis numérico eficiente y robusto. Esta metodología pertenece a la categoría de técnicas de discretización Immersed Boundary donde el concepto clave es extender el problema de análisis estructural a un dominio de aproximación, que contiene la frontera del dominio físico, cuya discretización (mallado) resulte sencilla.
El uso de mallados cartesianos proporciona una plataforma natural para la optimización de forma estructural porque el dominio numérico está separado del modelo físico, que podrá cambiar libremente durante el procedimiento de optimización sin alterar la discretización subyacente. Otro argumento positivo reside en el hecho de que la generación de malla se convierte en una tarea trivial. La discretización del dominio numérico y su manipulación, en coalición con la eficiencia de una estructura jerárquica de datos, pueden ser explotados para ahorrar coste computacional.
Sin embargo, estas ventajas pueden ser cuestionadas por varios problemas numéricos. Básicamente, el esfuerzo computacional se ha desplazado. Del uso de costosos algoritmos de mallado nos movemos hacia el uso de, por ejemplo, esquemas de integración numérica elaborados para poder capturar la discrepancia entre la frontera del dominio geométrico y la malla de elementos finitos que lo embebe. Para ello, utilizamos, por un lado, una formulación de estabilización para imponer condiciones de contorno y, por otro lado, hemos desarrollado nuevas técnicas para poder captar la representación exacta de los modelos geométricos.
Para completar la implementación de un método de optimización de forma estructural se usa una formulación adjunta para derivar las sensibilidades de diseño requeridas por los algoritmos basados en gradiente. Las derivadas no son sólo variables requeridas para el proceso, sino una poderosa herramienta para poder proyectar información entre diferentes diseños o, incluso, proyectar la información para crear mallas h-adaptadas sin pasar por un proceso completo de refinamiento h-adaptativo.
Las mejoras propuestas se reflejan en los ejemplos numéricos presentados en esta Tesis. Estos análisis muestran claramente el comportamiento superior de la tecnología cgFEM en cuanto a precisión numérica y eficiencia computacional. En consecuencia, el enfoque cgFEM se postula como una herramienta adecuada para la optimización de forma. / Actualment, amb la competència existent en la industria, s'imposa la necessitat de generar nous i millors dissenys . El tradicional procediment de prova i error, que amb freqüència es fa servir pel disseny de components mecànics, endarrereix el procés de disseny i produeix dissenys subòptims, pel que es necessiten nous enfocaments per obtindre avantatge competitiu. Amb el desenvolupament del Mètode dels Elements Finits (MEF) en el camp de l'enginyeria en la dècada de 1970, l'optimització de forma estructural va sorgir com un àrea d'aplicació prometedora.
No obstant això, a causa de la natura iterativa dels processos d'optimització de forma, la manipulació dels models numèrics en grans quantitats, junt amb l'error de discretització dels mètodes numèrics, pot fins i tot dissuadir de l'ús d'aquestes tècniques (o d'explotar tot el seu potencial), perquè al mateix temps els cicles de desenvolupament de nous productes s'estan acurtant.
Esta Tesi se centra en la formulació d'una metodologia 3D basada en el Cartesian-grid Finite Element Method (cgFEM) com a ferramenta per una anàlisi numèrica eficient i sòlida. Esta metodologia pertany a la categoria de tècniques de discretització Immersed Boundary on el concepte clau és expandir el problema d'anàlisi estructural a un domini d'aproximació fàcil de mallar que conté la frontera del domini físic.
L'utilització de mallats cartesians proporciona una plataforma natural per l'optimització de forma estructural perquè el domini numèric està separat del model físic, que podria canviar lliurement durant el procediment d'optimització sense alterar la discretització subjacent. A més, un altre argument positiu el trobem en què la generació de malla es converteix en una tasca trivial, ja que la discretització del domini numèric i la seua manipulació, en coalició amb l'eficiència d'una estructura jeràrquica de dades, poden ser explotats per estalviar cost computacional.
Tot i això, estos avantatges poden ser qüestionats per diversos problemes numèrics. Bàsicament, l'esforç computacional s'ha desplaçat. De l'ús de costosos algoritmes de mallat ens movem cap a l'ús de, per exemple, esquemes d'integració numèrica elaborats per poder capturar la discrepància entre la frontera del domini geomètric i la malla d'elements finits que ho embeu. Per això, fem ús, d'una banda, d'una formulació d'estabilització per imposar condicions de contorn i, d'un altra, desevolupem noves tècniques per poder captar la representació exacta dels models geomètrics
Per completar la implementació d'un mètode d'optimització de forma estructural es fa ús d'una formulació adjunta per derivar les sensibilitats de disseny requerides pels algoritmes basats en gradient. Les derivades no són únicament variables requerides pel procés, sinó una poderosa ferramenta per poder projectar informació entre diferents dissenys o, fins i tot, projectar la informació per crear malles h-adaptades sense passar per un procés complet de refinament h-adaptatiu.
Les millores proposades s'evidencien en els exemples numèrics presentats en esta Tesi. Estes anàlisis mostren clarament el comportament superior de la tecnologia cgFEM en tant a precisió numèrica i eficiència computacional. Així, l'enfocament cgFEM es postula com una ferramenta adient per l'optimització de forma. / Marco Alacid, O. (2017). Structural Shape Optimization Based On The Use Of Cartesian Grids [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86195 / Compendio
|
6 |
Méthode d'assemblage de maillages recouvrants autour de géométries complexes pour des simulations en aérodynamique compressible / Overset grid assembly method for simulations over complex geometries for compressible flows in aerodynamicsPeron, Stephanie 02 October 2014 (has links)
La simulation numérique des écoulements (CFD) est largement utilisée aujourd'hui dans l'industrie aéronautique, de l'avant-projet à la conception des appareils. En parallèle, la puissance des calculateurs s'est accrue, permettant d'effectuer des simulations résolvant les équations de Navier-Stokes moyennées (RANS) dans un délai de restitution acceptable du point de vue industriel. Cependant, les configurations simulées sont de plus en plus complexes géométriquement, rendant la réalisation du maillage très coûteuse en temps humain. Notre objectif est de proposer une méthode permettant de simplifier la génération de maillages autour de géométries complexes, en exploitant les avantages de la méthode Chimère, tout en levant les difficultés principales rencontrées par cette méthode dans le calcul des connectivités. Dans notre approche, le domaine de calcul est découpé en régions proches et en régions éloignées des corps. Des grilles curvilignes de faible extension décrivent les régions autour des corps. Le maillage de fond est défini par un ensemble de grilles cartésiennes superposées aux grilles de corps, qui sont engendrées et adaptées automatiquement selon les caractéristiques de l'écoulement. Afin de traiter des maillages recouvrants autour de géométries complexes sans surcoût humain, les différentes grilles sont regroupées par composant Chimère. Des relations d'assemblage sont alors définies entre composants, en s'inspirant de la Géométrie de Construction des Solides (CSG), où un solide peut être construit par opérations booléennes successives entre solides primitifs. Le calcul des connectivités Chimère est alors réalisé de manière simplifiée. Des simulations RANS sont effectuées autour d'un fuselage d'hélicoptère avec mât de soufflerie et autour d'une aile NACA0015 en incidence, afin de mettre en oeuvre la méthode. / Computational fluid dynamics (CFD) is widely used today in aeronautics, while the computing power has increased, enabling to perform simulations solving Reynolds-averaged Navier-Stokes equations (RANS) within an acceptable time frame from the industrial point of view. However, the configurations are more and more geometrically complex, making the mesh generation step prohibitive. Our aim is here to propose a method enabling a simplification of the mesh generation over complex geometries, taking advantage of the Chimera method and overcoming the major difficulties arising when performing overset grid connectivity. In our approach, the computational domain is partitioned into near-body regions and off-body regions. Near-body regions are meshed by curvilinear grids of short extension describing the obstacles involved in the simulation. Off-body mesh is defined by a set of adaptive Cartesian grids, overlapping near-body grids. In order to consider overset grids over complex geometries with no additional cost, grids are gathered by Chimera component, and assembly relations are defined between them, inspired by Constructive Solid Geometry, where a solid can result from boolean operations between primitive solids. The overset grid connectivity is thus simplified. RANS simulations are performed over a helicopter fuselage with a strut, and over a NACA0015 wing.
|
7 |
Efficient Asymptotic Preserving Schemes for BGK and ES-BGK models on Cartesian grids / Schémas préservant la limite asymptotique pour les modèles BGK et ES-BGK sur grilles cartésiennesBernard, Florian 09 March 2015 (has links)
Dans cette thèse, nous nous sommes intéressés à des écoulements complexes où les régimes hydrodynamique et raréfiés coexistent. On retrouve ce type d'écoulements dans des applications industrielles comme les pompes à vide ou encore les rentrées de capsules spatiales dans l'atmosphère, lorsque la distance entre les molécules de gaz devient si grande que le comportement microscopique des molécules doit être pris en compte. Pour ce faire, nous étudions 2 modèles de l'équation de Boltzmann, le modèle BGK et le modèle ES-BGK. Dans un premier temps, nous développons une nouvelle condition au bord permettant une transition continue de la solution du régime raréfié vers le régime hydrodynamique. Cette nouvelle condition permettant de préserver l'asymptotique vers les équations d'Euler compressible est ensuite incluse dans une méthode de frontière immergée pour traiter, à une précision raisonnable (ordre 2), le cas de solides immergés dans un écoulement, sur grilles cartésiennes. L'utilisation de grillescartésiennes permet une parallélisation aisée du code de simulation numérique afin d'obtenir une réduction considérable du temps de calcul, un des principaux inconvénients des modèles cinétiques. Par la suite, une approche dites aux grilles locales en vitesses est présentée réduisant également le temps de calcul de manière importante (jusqu'à 80%). Des simulations 3D sont également présentées montrant l'efficacité des méthodes. Enfin, le transport passive de particules solides dans un écoulement raréfié est étudié avec l'introduction d'un modèle de type Vlasov couplé au modèle cinétique. Grâce à une résolution basée sur des méthodes de remaillage, la pollution de dispositif optiques embarqués sur des satellites dues à des particules issues de la combustion incomplète dans les moteurs contrôlant d'altitude est étudiée. / This work is devoted to the study of complex flows where hydrodynamic and rarefled regimes coexist. This kind of flows are found in vacuum pumps or hypersonic re-entries of space vehicles where the distance between gas molecules is so large that their microscopicbehaviour differ from the average behaviour of the flow and has be taken into account. We then consider two modelsof the Boltzmann equation viable for such flows: the BGK model dans the ES-BGK model.We first devise a new wall boundary condition ensuring a smooth transition of the solution from the rarefled regime to the hydrodynamic regime. We then describe how this boundary condition (and boundary conditions in general) can be enforced with second order accuracy on an immersed body on Cartesian grids preserving the asymptotic limit towards compressible Euler equations. We exploit the ability of Cartesian grids to massive parallel computations (HPC) to drastically reduce the computational time which is an issue for kinetic models. A new approach considering local velocity grids is then presented showing important gain on the computational time (up to 80%). 3D simulations are also presented showing the efficiency of the methods. Finally, solid particle transport in a rarefied flow is studied. The kinetic model is coupled with a Vlasov-type equation modeling the passive particle transport solved with a method based on remeshing processes. As application, we investigate the realistic test case of the pollution of optical devices carried by satellites due to incompletely burned particles coming from the altitude control thrusters
|
8 |
On Viscous Flux Discretization Procedures For Finite Volume And Meshless SolversMunikrishna, N 06 1900 (has links)
This work deals with discretizing viscous fluxes in the context of unstructured data based finite volume and meshless solvers, two competing methodologies for simulating viscous flows past complex industrial geometries. The two important requirements of a viscous discretization procedure are consistency and positivity. While consistency is a fundamental requirement, positivity is linked to the robustness of the solution methodology. The following advancements are made through this work within the finite volume and meshless frameworks.
Finite Volume Method: Several viscous discretization procedures available in the literature are reviewed for: 1. ability to handle general grid elements 2. efficiency, particularly for 3D computations 3. consistency 4. positivity as applied to a model equation 5. global error behavior as applied to a model equation. While some of the popular procedures result in inconsistent formulation, the consistent procedures are observed to be computationally expensive and also have problems associated with robustness. From a systematic global error study, we have observed that even a formally inconsistent scheme exhibits consistency in terms of global error i.e., the global error decreases with grid refinement. This observation is important and also encouraging from the view point of devising a suitable discretization scheme for viscous fluxes. This study suggests that, one can relax the consistency requirement in order to gain in terms of robustness and computational cost, two key ingredients for any industrial flow solver. Some of the procedures are analysed for positivity as applied to a Laplacian and it is found that the two requirements of a viscous discretization procedure, consistency(accuracy) and positivity are essentially conflicting. Based on the review, four representative schemes are selected and used in HIFUN-2D(High resolution Flow Solver on UNstructured Meshes), an unstructured data based cell center finite volume flow solver, to simulate standard laminar and turbulent flow test cases. From the analysis, we can advocate the use of Green Gauss theorem based diamond path procedure which can render high level of robustness to the flow solver for industrial computations.
Meshless Method: An Upwind-Least Squares Finite Difference(LSFD-U) meshless solver is developed for simulating viscous flows. Different viscous discretization procedures are proposed and analysed for positivity and the procedure which is found to be more positive is employed. Obtaining suitable point distribution, particularly for viscous flow computations happens to be one of the important components for the success of the meshless solvers. In principle, the meshless solvers can operate on any point distribution obtained using structured, unstructured and Cartesian meshes. But, the Cartesian meshing happens to be the most natural candidate for obtaining the point distribution. Therefore, the performance of LSFD-U for simulating viscous flows using point distribution obtained from Cartesian like grids is evaluated. While we have successfully computed laminar viscous flows, there are difficulties in terms of solving turbulent flows. In this context, we have evolved a strategy to generate suitable point distribution for simulating turbulent flows using meshless solver. The strategy involves a hybrid Cartesian point distribution wherein the region of boundary layer is filled with high aspect ratio body-fitted structured mesh and the potential flow region with unit aspect ratio Cartesian mesh. The main advantage of our solver is in terms of handling the structured and Cartesian grid interface. The interface algorithm is considerably simplified compared to the hybrid Cartesian mesh based finite volume methodology by exploiting the advantage accrue out of the use of meshless solver. Cheap, simple and robust discretization procedures are evolved for both inviscid and viscous fluxes, exploiting the basic features exhibited by the hybrid point distribution. These procedures are also subjected to positivity analysis and a systematic global error study. It should be remarked that the viscous discretization procedure employed in structured grid block is positive and in fact, this feature imparts the required robustness to the solver for computing turbulent flows. We have demonstrated the capability of the meshless solver LSFDU to solve turbulent flow past complex aerodynamic configurations by solving flow past a multi element airfoil configuration. In our view, the success shown by this work in computing turbulent flows can be considered as a landmark development in the area of meshless solvers and has great potential in industrial applications.
|
Page generated in 0.0458 seconds