Spelling suggestions: "subject:"cartilage particulaire"" "subject:"artilage particulaire""
11 |
Caractérisation de nouveaux mécanismes transcriptionnels impliqués dans la biologie osseusePellicelli, Martin 12 1900 (has links)
Le développement et l'homéostasie des os requièrent l'orchestration spatio-temporelle d'un grand nombre de signaux moléculaires. Ces signaux entraînent l'activation ou l'inhibition de différents facteurs de transcription, lesquels sont en mesure de contrôler la prolifération et la différenciation des ostéoblastes et des chondrocytes. L'intégrité de ces différents mécanismes se doit d'être maintenu tout au long de la vie. Ainsi, une anomalie dans l'un de ces mécanismes conduit à l'apparition de pathologies osseuses et métaboliques telles qu’une hypophosphatémie, l'ostéoporose ou l'ostéoarthrite (OA). Afin d'en apprendre davantage sur la biologie osseuse, le projet décrit dans cette thèse a pour objectif de caractériser de nouveaux mécanismes de régulation transcriptionnelle pour deux gènes importants dans le développement des os et le maintien de leur intégrité. Il s’agit du Paired-like Homeodomain Transcription Factor 1 (PITX1) et du Phosphate-regulating gene with homology to endopeptidase on the X chromosome (PHEX).
Le premier mécanisme présenté dans cette thèse concerne la régulation transcriptionnelle du gène PITX1, un facteur de transcription à homéodomaine nécessaire, notamment, au développement des os des membres inférieurs et au maintien de l'intégrité du cartilage articulaire chez l'adulte. Ainsi, dans les chondrocytes articulaires, on note que l'expression de PITX1 est assurée par le recrutement du facteur de transcription E2F1 à deux éléments de réponse présents dans la région proximale du promoteur de PITX1. Aussi, dans les chondrocytes articulaires de patients souffrant d'OA, dans lesquels l'expression de PITX1 est fortement diminuée, un mécanisme de répression transcriptionnelle, lequel implique la protéine multifonctionnelle Prohibitin (PHB1), semble être activé. En effet, dans ces chondroytes, on note une forte accumulation nucléaire de PHB1 comparativement aux chondrocytes articulaires de sujets sains.
Le second mécanisme présenté dans cette thèse concerne la répression transcriptionnelle de PHEX, la peptidase mutée dans le syndrome d'hypophosphatémie lié au chromosome X (X-Linked Hypophosphatemia, XLH), lequel se caractérise par une hypophosphatémie et une ostéomalacie. Le traitement d'ostéoblastes à la Parathyroid hormone-related protein (PTHrP) permet d’observer la répression de PHEX. Afin de caractériser le mécanisme responsable de cette répression, des expériences de gènes rapporteurs ont révélé la présence de deux éléments de réponse pour le répresseur transcriptionnel E4BP4 dans le promoteur de PHEX. La suppression de l'expression d'E4BP4 par l'utilisation d'ARN d'interférence a permis de valider que ce facteur de transcription est responsable de la répression de PHEX suite au traitement d'ostéoblastes à la PTHrP.
En somme ces nouveaux mécanismes de régulation transcriptionnelle permettent de mieux comprendre la régulation de l'expression de PITX1 et de PHEX. Aussi, cette nouvelle implication de PHB1 dans la pathogenèse de l'OA offre de nouvelles possibilités de traitement et pourrait servir pour le diagnostic précoce de cette pathologie. Enfin, la caractérisation d'E4BP4 en tant que médiateur pour la répression de PHEX par la PTHrP suggère que ce répresseur transcriptionnel pourrait être impliqué dans le contrôle de la minéralisation des os et des niveaux de phosphate sanguin. / Bone development and homeostasis need a large amount of molecular signals to be finely regulated in time and space. These signals lead to the activation or to the inhibition of different transcription factors, which are implicated in the control of osteoblast and chondrocyte proliferation and differentiation. The integrity of these mechanisms is required in order to have a healthy life. Indeed, if one of these mechanisms is dysfunctional, different diseases could develop such as hypophosphatemia, osteoporosis and osteoarthritis (OA). In order to contribute to the comprehension of bone biology, the present thesis describes new mechanisms for the transcriptional regulation of two genes implicated in bone development and regulation: PITX1 (Paired-like Homeodomain Transcription Factor 1) and PHEX (Phosphate-regulating gene with homology to endopeptidase on the X chromosome).
The first mechanism described in this thesis relates to the transcriptional regulation of PITX1, a gene that encodes for a member of the homeobox family of transcription factors. PITX1 is required in bone development of inferior members and in the maintenance of the articular cartilage integrity in adults. Thereby, we showed that in articular chondrocytes, the expression of PITX1 is activated after the transcription factor E2F1 was recruited at two response elements in the proximal region of its promoter. Moreover, in articular chondrocytes from OA patients, we observed that the expression of PITX1 is strongly decreased. We proposed that the mechanism responsible for this repression requires the multitask protein Prohibitin (PHB1), which is strongly accumulated in OA chondrocyte nuclei, but not in chondrocyte nuclei from healthy individuals.
The second mechanism described in this thesis reports a transcriptional mechanism by which PHEX, the gene that encodes for the peptidase mutated in the syndrome X-Linked Hypophosphatemia (XLH)and characterized by hypophosphatemia and osteomalecia, is repressed. We showed that the treatment of osteoblasts with the Parathyroid hormone-related protein (PTHrP) induced a decrease in PHEX expression. In order to characterize the mechanism responsible for this repression, we performed gene reporter experiments and identified two response elements for the transcription factor E4BP4 in the PHEX promoter. The downregulation of E4BP4 by siRNA led to the validation that this repressor decreased the expression of PHEX in osteoblasts after their treatment with PTHrP.
In conclusion, the new transcriptional mechanisms presented in this thesis allow a better understanding of PITX1 and PHEX expression. Moreover, the potential role of PHB1 in the establishment of OA presents many interesting possibilities regarding the treatment and diagnosis of this disease. Finally, the characterization of E4BP4 as a mediator of PHEX repression by the PTHrP suggests that E4BP4 could be implicated in the control of bone mineralization and phosphate levels in the blood.
|
12 |
Développement du cartilage articulaire équin du fœtus à l’adulte : imagerie par résonance magnétique et microscopie en lumière polariséeCluzel, Caroline 12 1900 (has links)
La structure du cartilage articulaire adulte est caractérisée par la présence de couches créées par l’orientation des fibres de collagène (Benninghoff, 1925). Avant de présenter la structure adulte classique en arcades “de Benninghoff”, le cartilage subit une série de changements au cours de sa maturation (Julkunen et al., 2010; Lecocq et al., 2008). Toutefois, un faible nombre d’études s’est intéressé à la structure du collagène du cartilage articulaire in utero. Notre objectif était d’étudier la maturation de la surface articulaire de l’épiphyse fémorale distale chez le cheval, en employant à la fois l’imagerie par résonance magnétique (IRM) et la microscopie en lumière polarisée après coloration au rouge picrosirius, au niveau de sites utilisés dans les études de réparation tissulaire et de sites prédisposés à l’ostéochondrose (OC). Le but était de décrire le développement normal du réseau de collagène et la relation entre les images IRM et la structure histologique. Des sections provenant de cinq sites de l’épiphyse fémorale distale de 14 fœtus et 10 poulains et adultes ont été colorées au rouge picrosirius, après que le grasset ait été imagé par IRM, dans l’optique de visualiser l’agencement des fibres de collagène de type II. Les deux modalités utilisées, IRM et microscopie en lumière polarisée, ont démontré la mise en place progressive d’une structure en couches du réseau de collagène, avant la naissance et la mise en charge de l’articulation. / Adult articular cartilage has a zonal or layered structure, created by the predominant collagen fibre orientation (Benninghoff, 1925). Before reaching the classical “Benninghoff structure”, major changes take place with maturation from juvenile to adult cartilage (Julkunen et al., 2010; Lecocq et al., 2008). However, there have been few studies addressing the in utero collagen structure of articular cartilage. Our objective was to study the maturation of the distal femoral epiphysis articular surface, employing both magnetic resonance imaging and polarized light microscopy with picrosirius red staining, at sites employed for cartilage repair studies or susceptible to osteochondrosis to describe normal development of the spatial architecture of the collagen network at these sites and the relationship between magnetic resonance images and histology. Samples were harvested from five sites from the distal femoral epiphysis of 14 fetuses and 10 foals and adults, after the stifle was imaged with magnetic resonance imaging. Sections were stained with picrosirius red to determine the structural arrangement of the type II collagen fibres. Both magnetic resonance imaging and polarized light microscopy revealed an early progressive structural laminar/zonal organization of the collagen network, prior to birth and postnatal load-bearing.
|
13 |
Matériaux polymères avec hydrophilie contrôlée. Applications en ingénierie tissulaire du cartilage articulaire / Polymeric materials with controlled hydrophilic character. Applications in articular cartilage tissue engineeringBostan, Luciana Elena 11 February 2011 (has links)
Les maladies ostéoarticulaires représentent environ 10% de l’ensemble des pathologies identifiées en France chaque année. Ces maladies inflammatoires et dégénératives des articulations sont pour la plupart consécutives au vieillissement ou à un traumatisme et évoluent vers l’usure des cartilages, d’où un handicap sévère. Comme aucun traitement ne permet la réparation totale du tissu cartilagineux, la recherche médicale développe des techniques d’ingénierie tissulaire. Ces techniques utilisent des substrats polymériques et des cellules souches qui sont « contraints » de se développer pour former du tissu cartilagineux. Cependant, ces techniques ne peuvent pas encore être utilisées à l’échelle d’une articulation complète car il n’est pas possible de reproduire ex vivo à grande échelle la structure et les propriétés mécaniques et physicochimiques du cartilage articulaire. Dans ce contexte, les travaux de cette thèse ont permis de développer des matériaux polymères capables d’être implantés à l’échelle macroscopique dans les articulations pathologiques afin de combler l’usure des cartilages. Pour se faire, de nouveaux biomatériaux - hydrogels p(HEMA) - ont été obtenus en contrôlant le caractère hydrophile des hydrogels p(HEMA) au cours de leur synthèse chimique en présence de différents co-monomères (acide acrylique, acrylamide, acrylate d'éthylène et acrylate de butyle). Partant de là, les propriétés physicochimiques, mécaniques et tribologiques de ces nouveaux hydrogels ont été optimisées afin d’obtenir des propriétés similaires à celles du cartilage articulaire sain. Ensuite, la libération contrôlée de médicaments par ces hydrogels a été étudiée afin de minimiser les risques inflammatoires lors de leur utilisation en ingénierie tissulaire du cartilage articulaire. / Osteoarticular diseases re present approximately 10% of all diseases identified in France each year. These inflammatory and degenerative joint disease are mostly consecutive with age or injuries and the wear progress of cartilage, resulting in severe disability. Because no treatment will total repair the cartilage tissue, medical research is developing techniques based on tissue engineering. These techniques use polymer substrates and stem cells that are "forced" to develop into cartilage tissue. However, these techniques cannot be used across a run articulation because Il is not possible-to replicate ex vivo a large-scale structure and the physicochemical and mechanical properties of articular cartilage. In this context, the purpose of this thesis is to develop polymer materials that can be implanted at the macroscopic level in the joints disease that will fill the wear of the cartilage. To do so, new biomaterials - hydrogels p (HEMA)- were obtained by controlling the hydrophilic nature of hydrogels p (HEMA) during their chemical synthesis in the presence of various co-monomers (acrylic acid, acrylamide, acrylate ethylene and butyl acrylate). From there, physicochemical, mechanical and tribological properties of these novel hydrogels have been optimized to obtain similar properties to those of healthy articular cartilage. Then, the controlled release of drugs from these hydrogels was studied to minimize inflammatory when used in tissue engineering of articular cartilage.
|
Page generated in 0.0824 seconds