• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 2
  • Tagged with
  • 21
  • 21
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estudo da biocompatibilidade do gel de quitosana associada ao fosfato de glicerol para reparação de defeitos osteocondrais induzidos experimentalmente na tróclea do talus de eqüinos. / Study of chitosan - glycerol phosphate gel biocompatibility in experimentally induced equine talus osteochondral defect.

Edivaldo Aparecido Nunes Martins 29 April 2010 (has links)
Os estudos na área de engenharia de tecidos aplicada à reparação da cartilagem articular estão voltados ao desenvolvimento de uma matriz biocompatível que permita a diferenciação, proliferação e manutenção de células para produção de cartilagem hialina. A quitosana é um biomaterial e vem sendo estudada como suporte para condrócitos e para liberação controlada de substâncias. O objetivo deste trabalho foi estudar a biocompatibilidade do gel de quitosana associada ao fosfato de glicerol para reparação de defeitos osteocondrais induzidos experimentalmente na tróclea do talus de eqüinos. Foram utilizados cinco cavalos da raça Mangalarga, de três anos de idade, e por artroscopia foi criado um defeito osteocondral na tróclea lateral do talus de cada articulação. De forma aleatória um defeito foi escolhido para implante do gel de quitosana - fosfato de glicerol, e o defeito da articulação contralateral foi mantido vazio, servindo como controle. Para acompanhamento da evolução do processo de reparação da cartilagem articular foram realizados os exames físico, radiográfico e ultrassonográfico; análise do líquido sinovial (física, celularidade, quantificação de proteína, condroitim sulfato e ácido hialurônico); e análise da cartilagem articular (histológica e produção de proteoglicanos). Os resultados obtidos de todas as avaliações realizadas foram semelhantes entre os defeitos tratados e controle. O gel de quitosana fosfato de glicerol é biocompatível com o ambiente articular e pode ser indicado para futuras aplicações como suporte de células e para liberação controlada de medicamentos. / The tissue engineering studies applied to articular cartilage repair are focused on the development of scaffold biocompatibility allowing the differentiation, proliferation and cells maintenance providing production of the hyaline cartilage. Chitosan is a biomaterial that has been evaluated as a scaffold for chondrocyts implant and also as a drug-delivery control material. The aim of this work was to evaluate the chitosan glycerol phosphate gel biocompatibility in experimentally induced equine talus osteochondral defect. Five three years old Mangalarga breed horses were submitted to arthroscopy for osteochondral defect production on the lateral troclea of the talus in both tibiotarsal joints by arthroscopy. In a random form one defect was chosen for chitosan-glycerol phosphate gel implant, and the defect of the opposed joint was kept empty and used as a control. For the assessment of the articular cartilage repair process was performed the physic, radiographic and ultrassonographic exams; the synovial fluid analyze (physic, cellularity, protein quantification, chondroitin sulphate and hialuronan); and the articular cartilage analyze (hystologic and proteoglicans production). The results obtained in all evaluations performed were similar between the treated and control defects. The chitosan glycerol phosphate gel is biocompatible with the articular environment and can be indicate for future applications as an scaffold for cells support and drug-delivery control system.
12

Mesenchymal Stem Cell Constructs for Repair of Focal Cartilage Defects in an Ovine Model

Somerson, Jeremy 18 October 2016 (has links)
Focal cartilage defects (FCD) of the knee joint remain a difficult area of treatment for orthopaedic surgeons, as they often progress to generalized osteoarthritis (OA). Osteochondral autograft transfer (OAT) to the damaged cartilage area has shown promise, but this has been associated with pain and bleeding at the site of graft harvest. The use of mesenchymal stem cells (MSCs) in a matrix to regenerate articular cartilage has been proposed. This work describes a prospective case-control series comparing OAT with a novel, MSC-seeded scaffold graft in the stifle joints of healthy merino sheep. The triphasic grafts were composed of a beta-tricalcium phosphate osseous phase, an intermediate activated plasma phase and a collagen I hydrogel cartilage phase. The osseous and cartilage phases were seeded with autologous MSCs. All sheep underwent creation of a full-thickness, 4.0 mm diameter FCD (n=20) followed by six weeks of unrestricted activity, allowing the defects to degenerate naturally. At six weeks, half of the lesions were treated with OAT and half with the triphasic engineered grafts. At 6-month and 12-month follow-up, no significant differences were noted between groups with regard to overall histological scores. Macroscopic and biomechanical analysis at 12 months showed no significant differences between groups. In summary, autologous MSC-seeded implants showed comparable repair quality to OAT without the associated donor site morbidity.
13

Surgical Navigation for Articular Cartilage Repair: Motivation, Development, and Validation

Brockmeier, Peter Macy January 2009 (has links)
No description available.
14

The effect of synthetic cannabinoids on wound healing of chondrocyte monolayers and pseudo 3D cartilage tissue : effect of different concentrations of synthetic cannabinoids WIN55, 212-2, URB602 and HU-308 with and without their antagonists on wound healing of chondrocyte monolayers and pseudo 3D cartilage tissue

Abdeldayem, Ali Ibrahim Al January 2013 (has links)
Studies have been conducted to highlight the anti-inflammatory and immunosuppressive properties of cannabinoids and also their potentials for cartilage repair and regeneration. Various wound healing techniques can be used to investigate the mechanisms of chondrocyte repair in monolayers or three dimensional tissue constructs. The effect of different concentrations of the synthetic cannabinoids WIN55, 212-2 (WIN-2), URB602 and HU-308 with and without their antagonists on the wound healing of chondrocyte monolayers was investigated using a simple scratch assay model. The three cannabinoids were found to increase wound healing of chondrocyte monolayers, but at different rates. WIN55, 212-2 at a concentration of 1μM had the highest effect of increasing both migration and proliferation of chondrocytes cultured in a chondrogenic media, which increased the rate of wound closure. It was also found that treating the cells with 2μM of any of the cannabinoids lead to a decrease in cell proliferation and the rate of wound closure. These findings were further investigated, by studying the effect of WIN-2 on nitric oxide (NO) and matrix metalloproteinase-2 (MMP-2) expressed by wounded chondrocyte monolayers. Moreover, expression of collagen type-I, collagen type-II, fibronectin and S100 proteins were detected using immunofluorescence and verified quantitatively using ELISA based techniques, following treatment with 1μM and 2μM of WIN-2, for both 2D monolayers and 3D sheets. Treating chondrocytes with 1μM of WIN-2 significantly increased collagen type-II, fibronectin and S100, and significantly reduced collagen type-I compared to control groups in monolayers and chondrocyte cell sheets. On the other hand, both concentrations of WIN-2 significantly reduced the expression of the inflammation markers NO, and MMP-2, in a dose dependent manner. These findings highlight the potential use of the synthetic cannabinoid for improving the rate of wound closure as well as acting as an antiinflammatory agent, which could be used to enhance tissue engineering protocols aimed at cartilage repair.
15

DEVELOPMENT OF PHYSIOLOGIC CONTACT MODELS FOR ARTICULAR SURFACES

Owen, John 09 May 2011 (has links)
The superficial tangential zone (STZ) plays a significant role in normal articular cartilage’s ability to support loads and retain fluids. To date, tissue engineering efforts have not replicated normal STZ function in cartilage repairs. Finite element models were developed to examine the STZ’s role in normal and repaired articular surfaces under different contact conditions. Models were developed by incrementally adding improvements which culminated in contact loading of curved models by permeable and impermeable rigid surfaces and a normal cartilage layer. In the normal STZ, permeability was strain-dependent on volumetric strain; tension-compression nonlinearity modeled collagen behavior. Nonlinear geometry accounted for finite deformation. Results showed that STZ properties of sufficient quality maybe critical for the survival of transplanted constructs in vivo. As compared to rigid surfaces, loading via normal cartilage provided more physiologic results. These models can provide guidance in identifying critical features for the design of tissue engineered articular cartilage constructs.
16

Photoactivated Fixation of Cartilage Tissue

Sitterle, Valerie B. 20 October 2004 (has links)
Cartilage repair and/or replacement is necessary for many orthopaedic conditions including fissures from blunt trauma, autograft or allograft transplantation, and replacement of focal defects with biological or synthetic constructs. In cartilage repair, initial integration between the host tissue and repair site is desirable to allow for nutrient transport, molecular deposition to enhance fixation, and eventual stress transmission across the interface. It has been postulated that effective transport and crosslinking of newly synthesized collagen molecules across a repair site may be vital to the process of integrative repair, and recent experiments have correlated collagen deposition with the strength of such repair. Other investigations have shown that enzymatic degradation of the cartilage surface may enhance integrative repair and can increase bond strength of an adhesive to cartilage. This study explored a novel approach involving photochemical bonding of cartilage tissue samples through collagen crosslinking as a means to achieve rapid and effective initial fixation, with the goal of enhancing biological integration. Photosensitized collagen gels were first analyzed via FTIR to determine the crosslinking effects with respect to collagen type and photochemical mechanism. Using the photogellation FTIR results as a parametric guide, in vitro mechanical testing of photochemically bonded meniscal fibrocartilage and hyaline articular cartilage tissues was performed using a modified single-lap shear test. Finally, the cellular viability and bond stability of a photochemically bonded cartilage interface was evaluated over seven days of in vitro culture, where the bond strength was assessed by pushout of cores from annular defects. Results of this study have demonstrated the potential of combining enzymatic surface modification with photodynamic techniques to directly bond cartilage tissues for initial fixation.
17

Matrix-induced autologous chondrocyte implantation for articular cartilage injury : biology, histology and clinical outcomes

Willers, Craig Robert January 2008 (has links)
[Truncated abstract] Articular cartilage has no vascular, neural, or lymphatic supply, and hence no intrinsic capacity to self-repair following injury. These physiological limitations, combined with the inability of local chondrocytes to contribute to the repair process, translate to poor structural and functional outcomes in these troublesome defects, and osteoarthritic deterioration with time. Subsequently, many surgical therapies have been trialed to stimulate cartilage repair, but none have produced reliable outcomes. Hence, cartilage repair research has been broadened, with many investigators now focused on cell-based treatment. Smith began a revolution of autologous cell research when in 1965 she isolated chondrocytes from articular cartilage and transplanted them into fresh cartilage nodules (Smith, 1965). Since, new technologies and improved techniques have seen autologous chondrocyte implantation (ACI) widely accepted for use in clinical orthopaedics (Bentley et al., 2003; Brittberg et al., 1994; Grande et al., 1989; Peterson et al., 2002). At present, matrix-induced autologous chondrocyte implantation (MACI) is the most surgically simple form of ACI, boasting clinical outcomes comparable to any technique on the market, and far less complications compared to the first generation of ACI - periosteal ACI (Bartlett et al., 2005; Behrens et al., 2006; Gigante et al., 2006; Henderson et al., 2004; Marlovits et al., 2005; Minas, 2001; Willers et al., 2007; Zheng et al., 2007). But whilst MACI has been adopted by the orthopaedic surgeon for articular cartilage repair, many of the molecular, histological, and clinical factors governing patient outcomes are still largely understudied. Firstly we assessed the bioactivity of fibrin sealant (FS - Tisseel®), a critical component of MACI, on the migration and proliferation of human articular chondrocytes in vitro. We also looked to elucidate the associated molecular mechanisms of thrombin, a key active ingredient in FS, by examining the expression and activation of proteaseactivated receptors (PARs), established thrombin receptors. All four PAR isoforms were detected in human chondrocytes, with PAR-1 being the major isoform expressed. '...' This thesis has demonstrated biological, histological, and clinical features of the MACI technique. Our in vitro has supported the use of fibrin sealant and collagen membrane as the major material components of MACI, illustrating improved chondrocyte proliferation, migration, and chondrogenic differentiation. We have evidenced that MACI stimulates successful production of hyaline-like cartilage by 6 months, while also showing that revised and clinically failed repair tissues are predominantly hyaline-like and fibrocartilage with inferior composition. Clinically, we have documented significant improvements in patient repair structure, function, symptoms, quality of life, and satisfaction, whilst concurrently confirming sentiment within the literature regarding the importance of exercise/ rehabilitation for maximising MACI outcome. In summary, the findings presented in this thesis suggest that MACI is a biologically sound and clinically efficacious cell-based treatment option for repairing articular cartilage defects.
18

Preclinical good laboratory practice-compliant safety study to evaluate biodistribution and tumorigenicity of a cartilage advanced therapy medicinal product (ATMP)

Zscharnack, Matthias, Krause, Christoph, Aust, Gabriela, Thümmler, Christian, Peinemann, Frank, Keller, Thomas, Smink, Jeske J., Holland, Heidrun, Somerson, Jeremy S., Knauer, Jens, Schulz, Ronny M., Lehmann, Jörg January 2015 (has links)
Background: The clinical development of advanced therapy medicinal products (ATMPs), a new class of drugs, requires initial safety studies that deviate from standard non-clinical safety protocols. The study provides a strategy to address the safety aspects of biodistribution and tumorigenicity of ATMPs under good laboratory practice (GLP) conditions avoiding cell product manipulation. Moreover, the strategy was applied on a human ATMP for cartilage repair.
19

Outcomes of Salvage Arthrodesis and Arthroplasty for Failed Osteochondral Allograft Transplantation of the Ankle

Gaul, Florian, Barr, Cameron R., McCauley, Julie C., Copp, Steven N., Bugbee, William D. 02 September 2022 (has links)
Background: Osteochondral allograft (OCA) transplantation is a useful treatment for posttraumatic ankle arthritis in young patients, but failure rates are high and reoperations are not uncommon. The aim of this study was to evaluate the outcomes of failed ankle OCA transplantation converted to ankle arthrodesis (AA) or total ankle arthroplasty (TAA). Methods: We evaluated 24 patients who underwent salvage procedures (13 AA and 11 TAA) after primary failed ankle OCA transplantation. Reoperations were assessed. Failure of the salvage procedure was defined as an additional surgery that required a revision AA/TAA or amputation. Evaluation among nonfailing ankles included the American Academy of Orthopaedic Surgeons Foot and Ankle Module (AAOS-FAM), pain, and satisfaction. Results: In the salvage AA cohort, 3 patients were classified as failures (2 revision AA and 1 amputation). The 10 nonfailing patients had a mean follow-up of 7.4 years. Eighty-eight percent were satisfied with the procedure, but 63% reported continued problems with their ankle (eg, pain, swelling, stiffness). Mean pain level was 1.9 and AAOS-FAM core score was 83±13. In the salvage TAA cohort, 2 patients were classified as failures (both revision TAA). The 9 nonfailing patients had a mean follow-up of 3.8 years. Fifty percent were satisfied with the procedure, but 40% reported continued problems with their ankle. The mean pain level was 1.3, and the median AAOS-FAM core score was 82±26. Conclusion: Revision and reoperation rates for salvage procedures following failed OCA transplantation of the ankle are higher compared to published data for primary AA and TAA procedures. However, we believe OCA transplantation can serve as an interim procedure for younger patients with advanced ankle joint disease who may not be ideal candidates for primary AA or TAA at the time of initial presentation. Level of Evidence: Level IV, case series.
20

The effect of synthetic cannabinoids on wound healing of chondrocytes monolayers and pseudo 3D cartilage tissue. Effect of different concentrations of synthetic cannabinoids WIN55, 212-2, URB602 and HU-308 with and without their antagonists on wound healing of chondrocyte monolayers and pseudo 3D cartilage tissue.

Abdeldayem, Ali I.A. January 2013 (has links)
Studies have been conducted to highlight the anti-inflammatory and immunosuppressive properties of cannabinoids and also their potentials for cartilage repair and regeneration. Various wound healing techniques can be used to investigate the mechanisms of chondrocyte repair in monolayers or three dimensional tissue constructs. The effect of different concentrations of the synthetic cannabinoids WIN55, 212-2 (WIN-2), URB602 and HU-308 with and without their antagonists on the wound healing of chondrocyte monolayers was investigated using a simple scratch assay model. The three cannabinoids were found to increase wound healing of chondrocyte monolayers, but at different rates. WIN55, 212-2 at a concentration of 1μM had the highest effect of increasing both migration and proliferation of chondrocytes cultured in a chondrogenic media, which increased the rate of wound closure. It was also found that treating the cells with 2μM of any of the cannabinoids lead to a decrease in cell proliferation and the rate of wound closure. These findings were further investigated, by studying the effect of WIN-2 on nitric oxide (NO) and matrix metalloproteinase-2 (MMP-2) expressed by wounded chondrocyte monolayers. Moreover, expression of collagen type-I, collagen type-II, fibronectin and S100 proteins were detected using immunofluorescence and verified quantitatively using ELISA based techniques, following treatment with 1μM and 2μM of WIN-2, for both 2D monolayers and 3D sheets. Treating chondrocytes with 1μM of WIN-2 significantly increased collagen type-II, fibronectin and S100, and significantly reduced collagen type-I compared to control groups in monolayers and chondrocyte cell sheets. On the other hand, both concentrations of WIN-2 significantly reduced the expression of the inflammation markers NO, and MMP-2, in a dose dependent manner. These findings highlight the potential use of the synthetic cannabinoid for improving the rate of wound closure as well as acting as an antiinflammatory agent, which could be used to enhance tissue engineering protocols aimed at cartilage repair. / Egyptian Government

Page generated in 0.0534 seconds