• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gestion d'énergie d’un véhicule hybride électrique-essence équipé d'un catalyseur par minimisation conjointe consommation-pollution : étude et validation expérimentale / Energy management of gasoline-electric hybrid vehicle equipped with catalytic converter by joint fuel consumption- pollution minimization : study and experimental validation

Michel, Pierre 21 April 2015 (has links)
Dans les véhicules hybrides électrique-essence, les stratégies de gestion de l’énergie déterminent la répartition des flux d'énergies des moteurs thermique et électrique avec pour objectif classique la réduction de la consommation. Par ailleurs, pour respecter les seuils réglementaires d’émissions polluantes, les motorisations essence sont équipées d’un catalyseur 3-voies chauffé par les gaz d’échappement. Une fois amorcé, ce catalyseur convertit presque entièrement les émissions polluantes du moteur. C’est donc au démarrage que la plupart de la pollution est émise, lorsque le catalyseur est froid et que la pollution du moteur n’est pas convertie. La chauffe du catalyseur est donc l’étape clé de la dépollution. Ce mémoire propose une démarche de prise en compte des émissions polluantes par la gestion d’énergie. Le véhicule hybride est assimilé à un système dynamique à deux états, l’état de charge batterie et la température du catalyseur. Un problème d’optimisation dynamique est défini, qui minimise un critère original pondérant judicieusement la consommation et les émissions polluantes. La théorie de la commande optimale, avec les Principes du Minimum de Pontryaguine et de Bellman, permet de résoudre ce problème d’optimisation. Des stratégies optimales sont déduites et simulées avec un modèle de véhicule intégrant un modèle thermique multi-zones de catalyseur, validé expérimentalement, qui simule précisément la chauffe. Le compromis entre la consommation et la pollution est exploré. Une stratégie de chauffe du catalyseur, plus méthodique, analytique et efficace que les stratégies empiriques actuelles, est alors proposée. Cette stratégie est validée expérimentalement dans un environnement HyHIL (Hybrid Hardware In the loop). Une importante réduction de la pollution est obtenue, confortant l’approche d’optimisation dynamique pour la mise au point des stratégies de gestion d’énergie du véhicule hybride. / In hybrid gasoline-electric vehicles, the energy management strategies determine the distribution of engine and motor energy flows with fuel consumption reduction as classical objective. Furthermore, to comply with pollutant emissions standards, SI engines are equipped with 3-Way Catalytic Converters (3WCC) heated by exhaust gases. When 3WCC temperature is over the light-off temperature, engine pollutant emissions are almost totally converted. Most of the pollution is produced at the vehicle start, when the 3WCC is cold and the engine pollution is not converted. The 3WCC heating is thus the key aspect of the pollutant emissions. This dissertation proposes an approach to take into account pollutant emissions in energy management. The hybrid electric vehicle is considered as a dynamic system with two states, the battery state of charge and 3WCC temperature. A dynamic optimization problem is defined, minimizing an original criterion weighting judiciously fuel consumption and pollutant emissions. Optimal control theory, with the Pontryaguine Minimum and Bellman principles, allows solving this optimization problem. Optimal strategies are derived and simulated with a vehicle model including a multi-zones 3WCC thermal model, experimentally validated, which simulates precisely the 3WCC heating. The compromise between fuel consumption and pollutant emissions is explored. Then, an innovative 3WCC heating strategy is proposed and validated experimentally in a HyHIL (Hybrid Hardware In the loop) environment. A significant reduction of the pollutant emissions is obtained, strengthening the dynamic optimal approach to set up the energy management strategies for hybrid vehicles.
2

Optimisation énergétique de chaînes de traction hybrides essence et Diesel sous contrainte de polluants : Étude et validation expérimentale / Energy Optimization of Gasoline and Diesel Hybrid Powertrains with Pollutant Constraints : Study and Experimental Validation

Simon, Antoine 05 July 2018 (has links)
L’hybridation électrique de la chaîne de traction automobile est l’une des solutions adoptées pour respecter les règlementations futures sur ses émissions. La stratégie de supervision de la chaîne de traction hybride répartit la puissance produite par le moteur à combustion interne et la machine électrique. Elle répond habituellement à un problème d’optimisation où l’objectif est de réduire la consommation de carburant mais nécessite à présent d’y ajouter les émissions polluantes. La chaîne de dépollution, placée à l’échappement du moteur, permet de diminuer la quantité de polluants émise dans l’atmosphère. Cependant, elle n’est efficace qu’à partir d’un seuil de température, et dépend de la chaleur apportée par les gaz d’échappement du moteur thermique. La première partie de ce travail est donc consacrée à la modélisation de la consommation énergétique et des émissions polluantes de la chaine de traction hybride. La modélisation de l’efficacité de la chaîne de dépollution est réalisée selon deux contextes. Le modèle zéro-dimensionnel est adapté aux contraintes de calcul de la commande optimale. Le modèle unidimensionnel associé à un estimateur d’état permet d’être embarqué et calculé en temps réel. À partir de ces travaux, la seconde partie de cette thèse déduit des stratégies de supervision à l’aide de la théorie de la commande optimale. Dans un premier cas, le principe de Bellman permet de calculer la commande optimale d’un véhicule hybride Diesel selon des critères de supervision ayant plus ou moins connaissance de l’efficacité de la chaîne de dépollution des émissions de NOX. Dans un second cas, une stratégie issue du Principe du Minimum de Pontryagin, embarquée sur un véhicule hybride essence, fonctionnant en temps réel et calibrée selon deux paramètres est proposée. L’ensemble de ces travaux est validé expérimentalement au banc moteur et montre une réduction significative des émissions polluantes pour une faible pénalité de carburant. / Powertrain hybridization is a solution that has been adopted in order to conform to future standards for emissions regulations. The supervisory strategy of the hybrid powertrain divides the power emitted between the internal combustion engine and the electric machine. In past studies, this strategy has typically responded to an optimization problem with the objective of reducing consumption. However, in addition to this, it is now necessary to take pollutant emissions into account as well. The after-treatment system, placed in the exhaust of the engine, is able to reduce pollutants emitted into the atmosphere. It is efficient from a certain temperature threshold, and the temperature of the system is dependent on the heat brought by the exhaust gas of the engine. The first part of this dissertation is aimed at modelling the energy consumption and pollutant emissions of the hybrid powertrain. The efficiency model of the after-treatment system is adapted for use in two different contexts. The zero-dimensional model conforms to the constraints of the optimal control calculation. The one-dimensional model associated with a state estimator can be embedded in a vehicle and calculated in real time. From this work, the second part of this dissertation deduces supervisory strategies from the optimal control theory. On the one hand, Bellman’s principle is used to calculate the optimal control of a Diesel hybrid vehicle using different supervisory criteria, each having more or less information about the after-treatment system efficiency over NOX emissions. On the other hand, a strategy from Pontryagin’s minimum principle, embedded in a gasoline hybrid vehicle, running in real time and calibrated with two parameters, is proposed. The whole of this work is validated experimentally on an engine test bed and shows a significant reduction in pollutant emissions for a slight fuel consumption penalty.

Page generated in 0.0906 seconds