• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 39
  • 39
  • 39
  • 18
  • 16
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

COBALT-CATALYZED ENANTIOSELECTIVE RING OPENING OF UNSTRAINED HETEROCYCLES VIA VINYLIDENE ADDITION AND BETA-HETEROATOM ELIMINATION

Courtney E Nuyen (12462828) 26 April 2022 (has links)
<p> Ring opening of heterocyclic compounds through C-X bond cleavage is a useful strategy that provides rapid access to highly functionalized acyclic building blocks. In recent years, much work has focused on using transition metal catalysts to activate the C-X bonds of heterocycles and initiate ring opening. Metal-catalyzed ring opening of unstrained heterocycles is less prevalent than catalytic activation of strained heterocycles, which is advantageously driven by relief of ring strain. Methods for catalytic ring activation of unstrained heterocycles exist but are limited. Herein, we report the use of chiral cobalt complexes as catalysts for enantioselective ring opening of dihydrofuran and nitrogen-protected pyrrolines by utilizing dichloroalkenes as vinylidene precursors, Zn as a reductant, and ZnCl2 as an additive. Based on preliminary mechanistic studies, we believe this method proceeds through [2 + 2] cycloaddition between the ligated cobalt vinylidene species and the heterocycle, followed by β-heteroatom elimination, cobalt to zinc transmellation, and protonation to give rise to synthetically useful chiral allylic alcohol and amine products. </p>
22

<strong>Impact of Catalyst Composition on Olefin Aromatization in Presence and Absence of Hydrogen</strong>

Christopher K Russell (15494807) 17 May 2023 (has links)
<p>The expanded production of shale gas has increased the desire for developing methods for converting light alkanes, especially propane and ethane, into aromatic species (i.e., benzene, toluene, and xylene). A multi-step process for conversion of light alkanes to aromatics may be developed, where the first stage converts light alkanes into olefins and hydrogen, and the second stage converts olefins to aromatics. However, to determine the viability of this process, better understanding of the performance of olefin aromatization in the presence of equimolar hydrogen is necessary. </p> <p><br></p> <p>Previous studies on the conversion of olefins to aromatics with bifunctional ZSM-5 catalysts have concluded that benzene, toluene, and xylenes (BTX) yields are significantly higher than for ZSM-5 alone. These results were attributed to the presence of a dehydrogenation function of Ga or Zn leading to higher rates of aromatics formation. In this study, a highly active, bifunctional PtZn/SiO2 (1.3 wt% Pt, 2.6 wt% Zn) with H-ZSM-5 (Si/Al = 40) catalyst is investigated for propene aromatization at 723 K and 823 K. At low to moderate propene conversions, in addition to BTX, light alkanes and olefins are produced. Many of these may also be converted to aromatics at higher propene conversion while others are not, for example, light alkanes. When compared at equivalent space velocity and propylene conversion, the bifunctional catalyst has a much higher selectivity to aromatics than ZSM-5; however, when compared at equivalent conversion of all reactive intermediates, the bifunctional catalyst exhibits very similar BTX selectivity. At 723 K, for both ZSM-5 and the bifunctional catalyst, the primary non-reactive by-products are propane and butane. At 823 K, both ZSM-5 and the bifunctional catalyst convert propane and butane to aromatics increasing the aromatic yields, and the by-products are methane and ethane.</p> <p><br></p> <p>Additionally, previous studies have investigated the H-ZSM-5 and Ga/H-ZSM-5 in the absence of H2, which is necessary to understand in order to develop a process for the conversion of light alkanes to aromatics. Herein, proton-form ZSM-5 and Ga modified H-ZSM-5 are compared for propylene aromatization in the presence and absence of equimolar hydrogen at 1.9 kPa and 50 kPa partial pressures. At 1.9 kPa, the presence of H2 is shown to have no impact on the product distribution on H-ZSM-5 or Ga/H-ZSM-5. At 50 kPa, H2 is shown to have no significant impact on H-ZSM-5 and has no impact on Ga/H-ZSM-5 at conversions <80%. Additionally, the addition of Ga to H-ZSM-5 is shown to have no impact on the product distribution in the presence or absence of H2, contrary to previous reports. The disagreement with previous literature stems from previous literature comparing H-ZSM-5 and Ga/H-ZSM-5 at equivalent space velocity rather than equivalent propylene conversion despite previous studies showing that the presence of Ga increases the conversion at equivalent space velocity for olefin aromatization. </p>
23

<b>First principles computational studies for </b><b>electrocatalytic reaction systems</b>

Ankita Rajendra Morankar (19175470) 25 July 2024 (has links)
<p dir="ltr">A major goal of applied electrocatalysis research has been the development of electrode materials that are active, selective, stable, and cost effective in producing electricity or desired products. In recent years, developments in <i>ab initio</i> methods for the simulation of catalyst surfaces, and electrochemical reactions occurring on them, have enabled the development of a fundamental understanding of the processes occurring at the solid-liquid interface at an atomistic scale. In combination with experiments, these calculations are helpful in elucidating design principles that can then inform electrocatalyst design. In this work, we describe the application of density functional theory, <i>ab initio</i> molecular dynamics, and high throughput materials informatics approaches to understand oxygen and carbon based electrochemistries, with relevance to electricity conversion and environmental protection. We also introduce an approach, based on a Born-Haber cycle analysis, to quantify adsorbate stabilization from solvent molecules that are ubiquitous for any electrochemical reaction occurring at solid-liquid interfaces.</p><p dir="ltr">The oxygen reduction reaction (ORR) occurs at the cathode in hydrogen fuel cells and, in conjunction with the hydrogen oxidation reaction (HOR) at the anode, produces electricity and water. While platinum group metals are the current state-of-the-art catalysts for the ORR, their high cost has necessitated an extensive search for alternatives. To this end, we investigated iron-nitrogen-carbon (Fe-N-C) catalysts, which are platinum group metal-free and have been shown experimentally to have reasonable activity compared to platinum. Despite their potential as cost effective materials, however, these catalysts are not durable over long-term operation of fuel cells, impeding their commercial adoption. The mechanisms of deactivation of the iron-nitrogen-carbon catalysts under aqueous acidic electrochemical reaction conditions remain debated, and deciphering them is complicated due to the complex structure of the catalyst. We attempt to address these challenges by first examining the structural aspects of the catalyst, sampling numerous potential active site configurations, determining their in-situ structure, and linking them to intrinsic activity and intrinsic stability descriptors. Our findings reveal that an activity-stability tradeoff exists, with the most active sites being most prone to stability issues. Additionally, we explored the role of hydrogen peroxide, a side product of ORR, in degrading Fe-N-C catalysts. This analysis demonstrated that hydrogen peroxide strongly oxidizes the catalyst surface, resulting in an activity loss in the catalyst. Based on these insights, we propose design principles to enhance the activity and stability of Fe-N-C catalysts.</p><p dir="ltr">In additional work, we compared the predictions for the Fe-N-C catalysts with ORR analysis on platinum catalysts, and we further analyzed the oxygen evolution reaction (OER) on iridium oxides and the carbon dioxide reduction reaction (CO<sub>2</sub>R) on copper catalysts in water electrolyzers. For ORR on platinum, we identified the formation of hydroxyl and water adsorbate rings on stepped surfaces, akin to hexagonal rings found on terraces but largely absent on Fe-N-C catalysts. The ORR follows an associative mechanism involving proton coupled electron transfer to these ring structures. Furthermore, we provided activity descriptors that aligned with experimental observations, showing a higher activity on stepped surfaces compared to terraces. For OER on iridium oxides, we examined transformations of IrO<sub>2</sub> (110) surfaces, and we pinpointed oxidation of bridge and coordinatively unsaturated top sites as key charge transfer steps that correlate with peaks in cyclic voltammograms. Finally, for CO<sub>2</sub>R on copper, we investigated the role of water as a proton source under neutral or alkaline conditions, providing insights into the effect of coverages of surface species on the kinetics of water dissociation that, in turn, can provide protons for CO<sub>2</sub> reduction and the competing hydrogen evolution reaction.</p><p dir="ltr">Through this work, we have gained a deeper understanding of the properties of various catalytic materials under conditions specific to each type of electrochemistry. We elucidated the relationships between the in-situ structure, activity, and stability for the electrocatalysts, and identified key factors influencing catalyst performance. Integrating such insights from a computational perspective with experimental approaches holds great potential in making significant advancements in developing sustainable energy technologies and ultimately contributing to a greener and more energy-efficient future.</p>
24

Mechanistic Investigations of Ethene Dimerization and Oligomerization Catalyzed by Nickel-containing Zeotypes

Ravi Joshi (6897362) 12 October 2021 (has links)
<p>Dimerization and oligomerization reactions of alkenes are promising catalytic strategies to convert light alkenes, which can be derived from light alkane hydrocarbons (ethane, propane, butane) abundant in shale gas resources, into heavier hydrocarbons used as chemical intermediates and transportation fuels. Nickel cations supported on aluminosilicate zeotypes (zeolites and molecular sieves) selectivity catalyze ethene dimerization over oligomerization given their mechanistic preference for chain termination over chain propagation, relative to other transition metals commonly used for alkene oligomerization and polymerization reactions. Ni-derived sites initiate dimerization catalytic cycles in the absence of external activators or co-catalysts, which are required for most homogeneous Ni complexes and Ni<sup>2+</sup> cations on metal organic frameworks (MOFs) that operate according to the coordination-insertion mechanism, but are not required for homogeneous Ni complexes that operate according to the metallacycle mechanism. Efforts to probe the mechanistic details of ethene dimerization on Ni-containing zeotypes are further complicated by the presence of residual H<sup>+</sup> sites that form a mixture of 1-butene and 2-butene isomers in parallel acid-catalyzed pathways, as expected for the coordination-insertion mechanism but not for the metallacycle mechanism. As a result, the mechanistic origins of alkene dimerization on Ni cations have been ascribed to both the coordination-insertion and metallacycle-based cycles. Further, different Ni site structures such as exchanged Ni<sup>2+</sup>, grafted Ni<sup>2+</sup> and NiOH<sup>+</sup> cations are proposed as precursors to the dimerization active sites, based on analysis of kinetic data measured in different kinetic regimes and corrupted by site deactivation, leading to unclear and contradictory proposals of the effect of Ni precursor site structures on dimerization catalysis.</p> <p> Dimerization of ethene (453 K) was studied on Ni cations exchanged within Beta zeotypes in the absence of externally supplied activators, by suppressing the catalytic contributions of residual H<sup>+</sup> sites via selective pre-poisoning with Li<sup>+</sup> cations and using a zincosilicate support that contains H<sup>+</sup> sites of weaker acid strength than those on aluminosilicate supports. Isolated Ni<sup>2+</sup> sites were predominantly present, consistent with a 1:2 Ni<sup>2+</sup>:Li<sup>+</sup> ion-exchange stoichiometry, CO infrared spectroscopy, diffuse reflectance UV-Visible spectroscopy and <i>ex-situ</i> X-ray absorption spectroscopy. Isobutene serves a kinetic marker for alkene isomerization reactions at H<sup>+</sup> sites, which allows distinguishing regimes in which 2-butene isomers formed at Ni sites alone, or from Ni sites and H<sup>+</sup> sites in parallel. 1-butene and 2-butenes formed at Ni sites were not equilibrated and their distribution was invariant with ethene site-time, revealing the primary nature of butene double-bond isomerization at Ni sites as expected from the coordination-insertion mechanism. <i>In-situ</i> X-ray absorption spectroscopy showed that the Ni oxidation state was 2+ during dimerization, also consistent with the coordination-insertion mechanism. Moreover, butene site-time yields measured at dilute ethene pressures (<0.4 kPa) increased with time-on-stream (activation transient) during initial reaction times, and this activation transient was eliminated at higher ethene pressures (≥ 0.4 kPa) and while co-feeding H<sub>2</sub>. These observations are consistent with the <i>in-situ</i> formation of [Ni(II)-H]<sup>+</sup> intermediates involved in the coordination-insertion mechanism, as verified by H/D isotopic scrambling and H<sub>2</sub>-D<sub>2</sub> exchange experiments that quantified the number of [Ni(II)-H]<sup>+</sup> intermediates formed.</p> <p> The prevalence of the coordination-insertion cycles at Ni<sup>2+</sup> cations provides a framework to interpret the kinetic consequences of the structure of Ni<sup>2+</sup> sites that are precursors to the dimerization active sites. Beta zeotypes predominantly containing either exchanged Ni<sup>2+</sup> cations or grafted Ni<sup>2+</sup> cations show noteworthy differences for ethene dimerization catalysis. The deactivation transients for butene site-time yields on exchanged Ni<sup>2+</sup> cations indicate two sites are involved in each deactivation event, while those for grafted Ni<sup>2+</sup> cations indicate involvement of a single site. The site-time yields of butenes extrapolated to initial time, and then further extrapolated to zero ethene site-time, rigorously determined initial ethene dimerization rates (453 K, per Ni) that showed a first-order dependence in ethene pressure (0.05-1 kPa). This kinetic dependence implies the β-agostic [Ni(II)-ethyl]<sup>+ </sup>complex to be the most abundant reactive intermediate for the Beta zeolites containing exchanged and grafted Ni<sup>2+</sup> cations. Further, the apparent first-order dimerization rate constant was two orders of magnitude higher for exchanged Ni<sup>2+</sup> cations than for grafted Ni<sup>2+</sup> cations, reflecting differences in ethene adsorption or dimerization transition state free energies at these two types of Ni sites. </p> <p> The presence of residual H<sup>+</sup> sites on aluminosilicate zeotypes, in addition to the Ni<sup>2+</sup> sites, causes formation of saturated hydrocarbons and oligomers that are heavier than butenes and those containing odd numbers of carbon atoms. The reaction pathways on Ni<sup>2+</sup> and H<sup>+</sup> sites are systematically probed on a model Ni-exchanged Beta catalyst that forms a 1:1 composition of these sites <i>in-situ</i>. The quantitative determination of apparent deactivation orders for the decay of product space-time yields provides insights into the site origins of the products formed. Further, Delplot analysis systematically identifies the primary and secondary products in the reaction network. This strategy shows linear butene isomers to be primary products formed at Ni<sup>2+</sup>-derived sites, while isobutene is formed as a secondary product by skeletal isomerization at H<sup>+</sup> sites. In addition, propene is formed as a secondary product, purportedly by cross-metathesis between linear butene isomers and the reactant ethene at Ni<sup>2+</sup>-derived sites. Also, ethane is a secondary product that forms by hydrogenation of ethene at H<sup>+</sup> sites, with the requisite H<sub>2</sub> generated <i>in-situ</i> likely by dehydrogenation and aromatization of ethene at H<sup>+</sup> sites.</p> <a>The predominance of the coordination-insertion mechanism at Ni<sup>2+</sup>-derived sites implies kinetic factors influence isomer distributions within the dimer products, providing an opportunity to influence the selectivity toward linear and terminal alkene products of dimerization. In the case of bifunctional materials, reaction pathways on the Ni<sup>2+</sup> and H<sup>+ </sup>sites dictate the interplay between kinetically-controlled product selectivity at Ni sites and thermodynamic preference of product isomers formed at the H<sup>+</sup> sites. </a>In summary, through synthesis of control catalytic materials and rigorous treatment of transient kinetic data, this work presents a detailed mechanistic understanding of the reaction pathways at the Ni<sup>2+</sup> and H<sup>+</sup> sites, stipulating design parameters that have predictable consequences on the product composition of alkene dimerization and oligomerization.
25

Light Alkanes to Higher Molecular Weight Olefins: Catalysits for Propane Dehydrogenation and Ethylene Oligomerization

Laryssa Goncalves Cesar (7022285) 16 December 2020 (has links)
<p>The increase in shale gas exploitation has motivated the studies towards new processes for converting light alkanes into higher valuable chemicals, including fuels. The works in this dissertation focuses on two processes: propane dehydrogenation and ethylene oligomerization. The former involves the conversion of propane into propylene and hydrogen, while the latter converts light alkenes into higher molecular weight products, such as butylene and hexene. </p> <p>The thesis project focuses on understanding the effect of geometric effects of Pt alloy catalysts for propane dehydrogenation and the methodologies for their characterization. Pt-Co bimetallic catalysts were synthesized with increasing Co loadings, characterized and evaluated for its propane dehydrogenation performance. In-situ synchrotron X-Ray Powder Diffraction (XRD) and X-Ray Absorption (XAS) were used to identify and differentiate between the intermetallic compound phases in the nanoparticle surface and core. Difference spectra between oxidized and reduced catalysts suggested that, despite the increase in Co loading, the catalytic surface remained the same, Pt<sub>3</sub>Co in a Au<sub>3</sub>Cu structure, while the core became richer in Co, changing from a monometallic Pt fcc core at the lowest Co loading to a PtCo phase in a AuCu structure at the highest loading. Co<sup>II</sup> single sites were also observed on the surface, due to non-reduced Co species. The catalytic performance towards propane dehydrogenation reinforced this structure, as propylene selectivity was around 96% for all catalysts, albeit the difference in composition. The Turnover Rate (TOR) of these catalysts was also similar to that of monometallic Pt catalysts, around 0.9 s<sup>-1</sup>, suggesting Pt was the active site, while Co atoms behaved as non-active, despite both atoms being active in their monometallic counterparts.</p> <p>In the second project, a single site Co<sup>II</sup> catalyst supported on SiO<sub>2</sub> was evaluated for ethylene oligomerization activity. The catalyst was synthesized, evaluated for propane dehydrogenation, propylene hydrogenation and ethylene oligomerization activities and characterized <i>in-situ</i> by XAS and EXAFS and H<sub>2</sub>/D<sub>2</sub> exchange experiments. The catalysts have shown negligible conversion at 250<sup>o</sup>C for ethylene oligomerization, while a benchmark Ni/SiO<sub>2</sub> catalyst had about 20% conversion and TOR of 2.3x10<sup>-1</sup> s<sup>-1</sup>. However, as the temperature increased to above 300<sup>o</sup>C, ethylene conversion increased significantly, reaching about 98% above 425<sup>o</sup>C. <i>In-situ</i> XANES and EXAFS characterization suggested that H<sub>2</sub> uptake under pure H<sub>2</sub> increased in about two-fold from 200<sup>o</sup>C to 500<sup>o</sup>C, due to the loss of coordination of Co-O bonds and formation of Co-H bonds. This was further confirmed by H<sub>2</sub>/D<sub>2</sub> experiments with a two-fold increase in HD formation per mole of Co. <i>In-situ</i> XAS characterization was also performed with pure C­<sub>2</sub>H<sub>4</sub> at 200<sup>o</sup>C showed a similar trend in Co-O bond loss, suggesting the formation of Co-alkyl, similarly to that of Co-H. The <i>in-situ</i> XANES spectra showed that the oxidation state remained stable as a Co<sup>2+</sup> despite the change in the coordination environment, suggesting that the reactions occurs through a non-redox mechanism. These combined results allowed the proposition of a reaction pathway for dehydrogenation and oligomerization reactions, which undergo a similar reaction intermediate, a Metal-alkyl or Metal-Hydride intermediates, activating C-H bonds at high temperatures.</p>
26

Structure and Solvation of Confined Water and Alkanols in Zeolite Acid Catalysis

Jason S. Bates (8079689) 04 December 2019 (has links)
Brønsted and Lewis acid sites located within microporous solids catalyze a variety of chemical transformations of oxygenates and hydrocarbons. Such reactions occur in condensed phases in envisioned biomass and shale gas upgrading routes, motivating deeper fundamental understanding of the reactivity-determining interactions among active sites, reactants, and solvents. The crystalline structures of zeolites, which consist of SiO<sub>4</sub> tetrahedra with isomorphously-substituted M<sup>4+</sup> (e.g., Sn<sup>4+</sup>, Ti<sup>4+</sup>) as Lewis acid sites, or Al<sup>3+</sup> with charge-compensating extraframework H<sup>+</sup> as Brønsted acid sites, provide a reasonably well-defined platform to study these interactions within confining voids of molecular dimension. In this work, gas-phase probe reactions that afford independent control of solvent coverages are developed and used to interpret measured rate data in terms of rate and equilibrium constants for elementary steps, which reflect the structure and stability of kinetically relevant transition states and reactive intermediates. The foundational role of quantitative kinetic information enables building molecular insights into the mechanistic and active site requirements of catalytic reactions, when combined with complementary tools including synthetic approaches to prepare active sites and surrounding environments of diverse and intended structure, quantitative methods to characterize and titrate active sites and functional groups in confining environments, and theoretical modeling of putative active site structures and plausible reaction coordinates.<br><div><br></div><div>Bimolecular ethanol dehydration to diethyl ether was developed as a gas-phase catalytic probe reaction for Lewis acid zeolites. A detailed mechanistic understanding of the identities of reactive intermediates and transition states on Sn-Beta zeolites was constructed by combining experimental kinetic measurements with density functional theory treatments. Microkinetic modeling demonstrated that Sn active site configurations undergo equilibrated interconversion during catalysis (404 K, 0.5–35 kPa C<sub>2</sub>H<sub>5</sub>OH, 0.1–50 kPa H<sub>2</sub>O) from hydrolyzed-open configurations ((HO)-Sn-(OSi≡)<sub>3</sub>---HO-Si) to predominantly closed configurations (Sn-(OSi≡)<sub>4</sub>), and identified the most abundant productive (ethanol-ethanol dimer) and inhibitory (ethanol-water dimer) reactive intermediates and kinetically relevant transition state (S<sub>N</sub>2 at closed sites). Mechanism-based interpretations of bimolecular ethanol dehydration turnover rates (per Lewis acidic Sn, quantified by CD<sub>3</sub>CN IR) enabled measuring chemically significant differences between samples synthesized to contain high or low densities of residual Si-OH defects (quantified by CD<sub>3</sub>CN IR) within microporous environments that confine Sn active sites. Hydrogen-bonding interactions with Si-OH groups located in the vicinity of Sn active sites in high-defect Sn-Beta zeolites stabilize both reactive and inhibitory intermediates, leading to differences in reactivity within polar and non-polar micropores that reflect solely the different coverages of intermediates at active sites. The ability of confining microporous voids to discriminate among reactive intermediates and transition states on the basis of polarity thus provides a strategy to mitigate inhibition by water and to influence turnover rates by designing secondary environments of different polarity via synthetic and post-synthetic techniques. </div><div><br></div><div>Despite the expectation from theory that Sn active sites adopt the same closed configurations after high-temperature (823 K) oxidation treatments, distinct Sn sites can be experimentally identified and quantified by the ν(C≡N) infrared peaks of coordinated CD<sub>3</sub>CN molecules, and a subset of these sites are correlated with first-order rate constants of aqueous-phase glucose-fructose isomerization (373 K). In contrast, <i>in situ</i> titration of active sites by pyridine during gas-phase ethanol dehydration catalysis (404 K) on a suite of Sn-zeolites of different topology (Beta, MFI, BEC) quantified the dominant active site to correspond to a different subset of Sn sites than those dominant in glucose-fructose isomerization. An extensive series of synthetic and post-synthetic routes to prepare Sn-zeolites containing Sn sites hosted within diverse local coordination environments identified a subset of Sn sites located in defective environments such as grain boundaries, which are more pronounced in Beta crystallites comprised of intergrowths of two polymorphs than in zeolite frameworks with un-faulted crystal structures. Sn sites in such environments adopt defect-open configurations ((HO)-Sn-(OSi≡)<sub>3</sub>) with proximal Si-OH groups that do not permit condensation to closed configurations, which resolves debated spectroscopic assignments to hydrolyzed-open site configurations. Defect-open Sn sites are dominant in glucose-fructose isomerization because their proximal Si-OH groups stabilize kinetically relevant hydride shift transition states, while closed framework Sn sites are dominant in alcohol dehydration because they stabilize S<sub>N</sub>2 transition states via Sn site opening in the kinetically relevant step and re-closing as part of the catalytic cycle. The structural diversity of real zeolite materials, whose defects distinguish them from idealized crystal structures and allows hosting Lewis acid sites with distinct local configurations, endows them with the ability to effectively catalyze a broad range of oxygenate reactions.</div><div><br></div><div>During aqueous-phase catalysis, high extra-crystalline water chemical potentials lead to intra-pore stabilization of H<sub>2</sub>O molecules, clusters, and extended hydrogen-bonded networks that interact with adsorbed intermediates and transition states at Lewis acid sites. Glucose-fructose isomerization turnover rates (373 K, per defect-open Sn, quantified by CD<sub>3</sub>CN IR) are higher when Sn sites are confined within low-defect, non-polar zeolite frameworks that effectively prevent extended water networks from forming; however, increasing exposure to hot (373 K) liquid water generates Si-OH groups via hydrolysis of siloxane bridges and leads to lower turnover rates commensurate with those of high-defect, polar frameworks. Detailed kinetic, spectroscopic, and theoretical studies of polar and non-polar titanosilicate zeolite analogs indicate that extended water networks entropically destabilize glucose-fructose isomerization transition states relative to their bound precursors, rather than influence the competitive adsorption of water and glucose at active sites. Infrared spectra support the stabilization of extended hydrogen-bonded water networks by Si-OH defects located within Si- and Ti-Beta zeolites, consistent with ab initio molecular dynamics simulations that predict formation of distinct thermodynamically stable clustered and extended water phases within Beta zeolites depending on the external water chemical potential and the nature of their chemical functionality (closed vs. hydrolyzed-open Lewis acid site, or silanol nest defect). The structure of water confined within microporous solids is determined by the type and density of intracrystalline polar binding sites, leading to higher reactivity in aqueous media when hydrogen-bonded networks are excluded from hydrophobic micropores.</div><div><br></div><div>Aluminosilicate zeolites adsorb water to form (H<sub>3</sub>O<sup>+</sup>)(H<sub>2</sub>O)<sub>n</sub> clusters that mediate liquid-phase Brønsted acid catalysis, but their relative contributions to the solvation of reactive intermediates and transition states remain unclear. Bimolecular ethanol dehydration turnover rates (per H<sup>+</sup>, quantified by NH<sub>3</sub> temperature-programmed desorption and <i>in situ</i> titrations with 2,6-di-<i>tert</i>-butylpyridine) and transmission infrared spectra measured on Brønsted acid zeolites under conditions approaching intrapore H<sub>2</sub>O condensation (373 K, 0.02–75 kPa H<sub>2</sub>O) reveal the formation of clustered, solvated (C<sub>2</sub>H<sub>5</sub>OH)(H<sup>+</sup>)(H<sub>2</sub>O)<sub>n</sub> intermediates, which are stabilized to greater extents than bimolecular dehydration transition states by extended hydrogen-bonded water networks. Turnover rates deviate sharply below those predicted by kinetic regimes in the absence of extended condensed water networks because non-ideal thermodynamic formalisms are required to account for the different solvation of transition states and MARI. The condensation of liquid-like phases within micropores that stabilize reaction intermediates and transition states to different extents is a general phenomenon for Brønsted acid-catalyzed alcohol dehydration within zeolites of different topology (CHA, AEI, TON, FAU), which governs the initial formation and structure of clustered hydronium-reactant and water-protonated transition state complexes. Systematic control of liquid-phase structures within confined spaces by gas-phase measurements around the point of intrapore condensation enables more detailed mechanistic and structural insights than those afforded by either kinetic measurements in the liquid phase, or structural characterizations of aqueous systems in the absence of reactants.</div>
27

Amine-Boranes: Synthesis and Applications

Henry J Hamann (10730742) 30 April 2021 (has links)
Reported herein is a brief summary of the history, properties, and applications of amine-boranes. The past methods devised for their preparation are described and the routes used to produce the compounds used in the work presented here are detailed. Building on prior synthetic approaches to amine-boranes, a new carbon dioxide mediated synthesis is presented. Proceeding through a monoacyloxyborane intermediate, the borane complexes of ammonia, primary, secondary, tertiary, and heteroaromatic amine are provided in 53-99% yields. Utilizing the amine-boranes obtained from the methods described, two divergent methods for direct amidation are introduced. The first uses amine-boranes as dual-purpose reagents, where the carboxylic acid is first activated by the borane moiety to form a triacyloxyborane-amine complex. This allows the delivery of the coordinated amine to form the amide products. A series of primary, secondary, and tertiary amides were prepared in 55-99% yields using this protocol, which displays a broad functional group tolerance. Extended from this dual-purpose methodology, a catalytic amidation is described. Utilizing ammonia-borane as a substoichiometric (10%) catalyst, a series of secondary and tertiary amide are prepared directly from carboxylic acids and amines in 59-99% yields, including amines containing typically borane reactive functionalities including alcohols, thiols, and alkenes. Amine-boranes are additionally used in two borylation methodologies. By reaction with <i>n</i>-butyl lithium, the amine-boranes are converted to the corresponding lithium aminoborohydrides, which upon reaction with a terminal alkyne provides the alkynyl borane-amine complexes in 65-98% yields. This process is compatible with both alkenes and internal alkynes, as well as a range of aprotic functionalities. A new strategy for aminoborane synthesis is also described and applied to the borylation of haloarenes. Activation of a series of amine-boranes with iodine produces the iodinated amine-borane, which undergoes dehydrohalogenation with an appropriate base to produce either monomeric or dimeric aminoboranes. Several aminoboranes were synthesized exclusively as the monomeric species, which due to their greater reactivity, were used directly in the synthesis of a series of aryl boronates in 65-99% yields.
28

Pyrolysis based processing of biomass and shale gas resources to fuels and chemicals

Abhijit D Talpade (11150073) 19 July 2021 (has links)
<div>Thermochemical processing using fast-pyrolysis technology has been used to upgrade feedstocks like biomass and natural gas and more recently studied for plastic recycling. This work aims to improve the selectivity to desired products from a pyrolysis process through better catalysts and reactor design.</div><div>Fast-pyrolysis of biomass to fuels is considered a promising technology due to the higher yields to liquid fuel products. However, the process suffers from low carbon efficiency to hydrocarbon products due to carbon losses to biochar, accounting for 25-40 wt.% of the product stream depending on the biomass type. Using a combination of inorganic free-model compounds, biomass pretreatments and mass spectrometric analyses coupled with lab-scale reactor experiments, the char contribution from the lignocellulosic components (cellulose, hemicellulose, and lignin) and mineral content was investigated. The lignocellulosic components were found to follow the order: Lignin > Hemicellulose > Cellulose. Addition of inorganic salts (K, Na and Ca) to cellobiose, a model compound for cellulose, was found to catalyze additional dehydration reactions on primary pyrolysis products (e.g., levoglucosan) to yield secondary products (e.g., 5-HMF), and produce more char. This knowledge of char formation contributors can enable optimization of the bio-refining process sequencing using process system engineering tools and thus achieve higher carbon efficiency for biomass conversion.</div><div>While biomass has been viewed as a future energy source, there is a need for a transition fuel with the lowest possible greenhouse gas (GHG) footprint. Shale gas, consisting primarily of methane, is a potential candidate due to its large availability and high hydrogen to carbon ratio. Recently, single-atom catalysts have been studied as stable and non-coking catalysts for the non-oxidative coupling of methane (NOCM) to higher hydrocarbons (like ethylene). However, lack of post reaction catalyst characterization and rigorous kinetic testing have raised questions on the stability of these materials. This work combines homogenous (Chemkin simulations, gas phase kinetics) and heterogeneous reaction kinetic studies (reaction orders, steady state kinetics), coupled with microscopy (Scanning and Transmission Electron Microscopy (SEM, TEM)) and surface characterization tools (BET, TGA, Raman spectroscopy, CO-IR spectroscopy) to understand the role of the solid materials during NOCM. Post reaction catalyst characterization using transmission electron microscopy (TEM) analysis on the spent samples (CH4 treated at 975 deg C for 3 hours) reveals that the materials containing Pt single atoms (SA) and Pt nanoparticles (NP) are found to sinter to particles approximately 5-7 nm in size. Ethylene hydrogenation experiments, a kinetic probe for surface Pt, shows initial ethane formation rates that are four orders of magnitude lower on the isolated Pt+2 sites, found on Pt SAs, when compared to the rates obtained if all the surface Pt were assumed to be metallic. These results suggest that single atoms are not the active sites. However, under same reaction conditions (50 mL min-1 CH4 flow and 975 deg C), the ethylene formation rates (in mol h-1) on the solid materials are 2-7 times higher than the empty tube rates, indicating that the surface plays a role during NOCM. Addition of incremental amounts of the solid material increases methane conversion, extrapolating to the bare tube conversion at zero loading. This indicates that the solid materials improve the NOCM performance.</div><div>Experiments with pure methane feeds indicate that the solid materials are found to deactivate due to coking on the surface, evidenced by the coke buildup observed using thermogravimetric analysis (TGA) and the initial time-on-stream kinetic results showing rapid methane deactivation. Raman spectroscopy on the spent catalysts indicate at the development of a similar graphite-like surface intermediate under steady state conditions on all the materials. When compared under the same reaction conditions (975 deg C, 60 mL min-1 Pure CH4 with 10% UHP N2 feed, space velocity = 39.6 L h-1 gcat-1), these coked surfaces show a linear dependence for the ethylene formation rate (in mol h-1 gcat-1) with the spent surface area of the material (in m2 gcat-1). This observation is irrespective of the type of the material studied (alpha Al2O3, Davisil SiO2, 1 wt.% Pt/CeO2, Graphene, Graphite, etc.). In conclusion, these results prove that the spent surface area is critical for NOCM.</div><div>Similar experimental setup was used to study the dehydrogenation of methane, ethane, and propane mixture in the gas phase. Initial experiments at 1 bar pressure and reaction temperatures ranging from 650-850 deg C revealed that ethylene and hydrogen are the main gas phase products, with methane acting as a diluting agent under these reaction conditions. These results could enable direct processing of the shale gas without the use of a conventional ethane/propane separation step. These results were further studied by the system engineers using ANSYS ChemkinPro. For practical applications, these experiments were suggested to be performed at much higher operating pressures (~30 bar) and low residence time (~0.2 s), with a quick quenching step added after the reactor to prevent change in the exit stream compositions. A new reaction system was built to experimentally validate these recommendations.</div>
29

Surface Science Studies of Strong Metal-Support Interactions in Heterogenous Catalysts

Junxian Gao (12427542) 19 April 2022 (has links)
<p>The strong metal support interaction (SMSI) is among the best-known classes of metal-oxide interfacial interactions in heterogeneous catalysis, which is defined by the coverage of surface oxide on metal nanoparticles, forming a metal-oxide interface. However, there is limited insight in the atomic scale understanding of the structure of the SMSI oxide. In this work, surface science techniques including scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS) and low energy electron diffraction (LEED) were employed to investigate interfacial interactions in multiple catalytic systems, including ZnO-Pd, ZnO-Pt, and MoOx-Pt. To utilize the capabilities of the surface science techniques and to mimic a catalytic metal nanoparticle in SMSI state, ultrathin oxide films were prepared on metal single crystals as inverse model catalysts.</p> <p>The structural and chemical transformations of ultrathin zinc (hydroxy)oxide films on Pd(111) were studied under varying gas phase conditions (UHV, 5×10−7 mbar of O2 and D2/O2 mixture). Under oxidative conditions, zinc oxide forms partially hydroxylated bilayer islands on Pd(111). Sequential treatments of the submonolayer ZnOxHy films in D2/O2 mixture (1:4) at 550 K evoked structural transformations from bilayer to monolayer and to a PdZn near-surface alloy, in accompany with the reduction of Zn, demonstrating that zinc oxide as a non-reducible oxide, can spread on metal surface and show an SMSI-like behavior in the presence of hydrogen. A mixed canonical – grand canonical phase diagram revealed that the monolayer intermediate structure is a metastable structure formed during the kinetic transformation, and the near-surface alloys are stable under the D2/O2 conditions. Grand canonical phase diagram predicted that under real SMSI conditions zinc oxide films on Pd nanoparticles would be stabilized by hydroxylation with stoichiometries such as ZnOH and Zn2O3H3. Based on the experimental and theoretical observations, we propose that the mechanism of metal nanoparticle encapsulation involves both surface (hydroxy)oxide formation as well as alloy formation, depending on the environmental conditions.</p> <p>Hydroxylation plays a more important role in the ZnO/Pt(111) system. Different from Pd(111), zinc oxide tends to form monolayer graphite-like ZnO films on Pt(111) under oxidative conditions at submonolayer coverages. This structure is extremely susceptible to hydroxylation at room temperature, leading to spontaneous formation of honeycomb-like Zn6O5H5 films in hydrogen. The interaction of the two distinct structures with Pt were investigated by XPS, STM, and HREELS with CO, C2H4, and NO as probe molecules. Zn exhibits a partially reduced oxidation state in Zn6O5H5 and donates negative charge to surface Pt in the confined rings, leading to a switch from linear CO adsorption to bridged CO adsorption in accompany with a 50 cm-1 shift of ν(CO) towards lower frequencies. C2H4 readily forms ethylidyne (*CCH3) species at room temperature once adsorbed on Pt(111), while the formation of ethylidyne is weakened on the Zn6O5H5/Pt(111) surface. In summary, this study demonstrated a unique metal-hydroxide interaction, which serves as a novel approach for the modification of metal catalysts.</p> <p>The partial coverage of metal surfaces by oxides could be utilized to passivate specific sites of catalysts, improving the activity and stability. Herein, we studied the structure of surface Mo oxides on Pt(111) and Pt(544) using STM, XPS, and HREELS. At 0.08 ML coverage, Mo oxide tends to form 1~2 nm clusters and the majority of Mo is in +5 oxidation state. The Mo oxide clusters tend to aggregate near the monoatomic Pt steps, showing a higher local density compared to the wide terraces. Therefore, our results provide experimental evidence for the site-selective growth of Mo oxides at step sites, which could prevent the leaching of active component in catalysts under real reaction conditions.</p> <p>Overall, through atomic-level characterization of inverse model catalysts, we provided insights into the nature of metal-oxide interactions in multiple systems. The surface oxide films influence the property of metal surfaces in various ways, including migration, alloy formation, electronic perturbation, geometric confinement, and site-selective blocking. These findings emphasize the necessity of understanding the real structure of catalytic surfaces under different reaction conditions and shed light on rational design of oxide supported metal nanoparticle catalysts.</p>
30

First Principles and Machine Learning-Based Analyses of Stability and Reactivity Trends for High-Entropy Alloy Catalysts

Gaurav S Deshmukh (19453390) 21 August 2024 (has links)
<p dir="ltr">Since its inception, the field of heterogeneous catalysis has evolved to address the needs of the ever-growing human population. Necessity, after all, fosters innovation. Today, the world faces numerous challenges related to anthropogenic climate change, and that has necessitated, among other things, a search for new catalysts that can enable renewable energy conversion and storage, sustainable food and chemicals production, and a reduction in carbon emissions. This search has led to the emergence of many promising classes of materials, each having a unique set of catalytic properties. Among such candidate materials, high-entropy alloys (HEAs) have very recently shown the potential to be a new catalyst design paradigm. HEAs are multimetallic, disordered alloys containing more than four elements and, as a result, possess a higher configurational entropy, which gives them considerable stability. They have many conceivable benefits over conventional bimetallic alloy catalysts—greater site heterogeneity, larger design space, and higher stability, among others­. Consequently, there is a need to explore their application in a wide range of thermal and electrocatalytic reaction systems so that their potential can be realized.</p><p dir="ltr">In the past few decades, first principles-based approaches involving Density Functional Theory (DFT) calculations have proven to be effective in probing catalytic mechanisms at the atomic scale. Fundamental insights from first principles studies have also led to a detailed understanding of reactivity and stability trends for bimetallic alloy catalysts. However, the express application of first principles approaches to study HEA catalysts remains a challenge, due to the large computational cost incurred in performing DFT calculations for disordered alloys, which can be represented by millions of different configurations. A combination of first principles approaches and computationally efficient machine learning (ML) approaches can, however, potentially overcome this limitation.</p><p dir="ltr">In this thesis, combined workflows involving first principles and machine learning-based approaches are developed. To map catalyst structure to properties graph convolutional network (GCN) models are developed and trained on DFT-predicted target properties such as formation energies, surface energies, and adsorption energies. Further, the Monte Carlo dropout method is integrated into GCN models to provide uncertainty quantification, and these models are in turn used in active learning workflows that involve iterative model retraining to both improve model predictions and optimize the target property value. Dimensionality reduction methods, such as principal components analysis (PCA) and Diffusion Maps (DMaps), are used to glean physicochemical insights from the parameterization of the GCN.</p><p dir="ltr">These workflows are applied to the analysis of binary, ternary, and quaternary alloy catalysts, and a series of fundamental insights regarding their stability are elucidated. In particular, the origin and stability of “Pt skins” that form on Pt-based bimetallic alloys such as Pt<sub>3</sub>Ni in the context of the oxygen reduction reaction (ORR) are investigated using a rigorous surface thermodynamic framework. The active learning workflow enables the study of Pt skin formation on stepped facets of Pt<sub>3</sub>Ni (with a complex, low-symmetry geometry), and this analysis reveals a hitherto undiscovered relationship between surface coordination and surface segregation. In another study, an active learning workflow is used to identify the most stable bulk composition in the Pd-Pt-Sn ternary alloy system using a combination of exhaustively sampled binary alloy data and prudently sampled ternary alloy data. Lastly, a new GCN model architecture, called SlabGCN, is introduced to predict the sulfur poisoning characteristics of quaternary alloy catalysts, and to find an optimal sulfur tolerant composition.</p><p dir="ltr">On another front, the electrocatalytic activity of quinary HEAs towards the ORR is investigated by performing DFT calculations on HEA structures generated using the High-Entropy Alloy Toolbox (HEAT), an in-house code developed for the high-throughput generation and analysis of disordered alloy structures with stability constraints (such as Pt skin formation). DFT-predicted adsorption energies of key ORR intermediates are further deconvoluted into ligand, strain, and surface relaxation effects, and the influence of the number of Pt skins on these effects is expounded. A Sabatier volcano analysis is performed to calculate the ORR activities of selected HEA compositions, and correspondence between theoretical predictions and experimental results is established, to pave the way for rational design of HEA catalysts for oxygen reduction.</p><p dir="ltr">In summary, this thesis examines stability and reactivity trends of a multitude of alloy catalysts, from conventional bimetallic alloys to high-entropy alloys, using a combination of first principles approaches (involving Density Functional Theory calculations) and machine learning approaches comprising graph convolutional network models.</p>

Page generated in 0.3972 seconds