• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of Functionalized Organic Molecules Using Copper Catalyzed Cyclopropanation, Atom Transfer Radical Reactions and Sequential Azide-Alkyne Cycloaddition

Ricardo, Carolynne Lacar 19 June 2012 (has links)
Copper-catalyzed regeneration in atom transfer radical addition (ATRA) utilizes reducing agents, which continuously regenerate the activator (CuI) from the deactivator (CuII) species. This technique was originally found for mechanistically similar atom transfer radical polymerization (ATRP) and its application in ATRA and ATRC has allowed significant reduction of catalyst loadings to ppm amounts. In order to broaden the synthetic utility of in situ catalyst regeneration technique, this was applied in copper-catalyzed atom transfer radical cascade reaction in the presence of free radical diazo initiators such as 2,2���-azobis(isobutyronitrile) (AIBN) and (2,2���-azobis(4-methoxy-2,4-dimethyl valeronitrile) (V-70), which is the first part of this dissertation. This methodology can be translated to sequential ATRA/ATRC reaction, in which the addition of CCl4 to 1,6-dienes results in the formation 5-hexenyl radical intermediate, which undergoes expedient 1,5-ring closure in the exo- mode to form 1,2-disubstituted cyclopentanes. When [CuII(TPMA)Cl][Cl] complex was used in conjunction with AIBN at 60 0C, cyclic products derived from the addition of CCl4 to 16-heptadiene, diallyl ether and N,N��-diallyl-2,2,2-trifluoroacetamide were synthesized in nearly quantitative yields using as low as 0.02 mol% of the catalyst (relative to 1,6-diene). Even more impressive were the results obtained utilizing tert��-butyl-N,N-diallylcarbamate and diallyl malonate using only 0.01 mol% of the catalyst. Cyclization was also found to be efficient at ambient temperature when V-70 was used as the radical initiator. High product yields (>80%) were obtained for mixtures having catalyst concentrations between 0.02 and 0.1 mol%. Similar strategy was also conducted utilizing unsymmetrical 1,6-diene esters. It was found out that dialkyl substituted substrates (dimethyl-2-propenyl acrylate and ethylmethyl-2-propenyl acrylate) underwent 5-exocyclization producing halogenated g-lactones after the addition of CCl4 in the presence of 0.2 mol% of [CuII(TPMA)Cl][Cl]. Based on calculations using density functional theory (DFT) and natural bond order (NBO) analysis, cyclization of 1,6-diene esters was governed by streoelectronic factors. <br>As a part of broadening the synthetic usefulness of in situ copper(I) regeneration, scope was further extended to sequential organic transformations. Based on previous studies, copper(I) catalyzed [3+2] azide-alkyne cycloaddition is commonly conducted via in situ reduction of CuII to CuI species by sodium ascorbate or ascorbic acid. At the same time, ATRA reactions have been reported to proceed efficiently via in situ reduction of CuII complex to the activator species or CuI complex has been fulfilled in the presence of ascorbic acid. Since the aforementioned reactions share similar catalyst in the form of copper(I), a logical step was taken in performing these reactions in one-pot sequential manner. Reactions involving azidopropyl methacrylate and 1-(azidomethyl)-4-vinylbenzene in the presence of a variety of alkynes and alkyl halides, catalyzed by as low as 0.5 mol-% of [CuII(TPMA)X][X] (X=Br-, Cl-) complex, proceeded efficiently to yield highly functionalized (poly)halogenated esters and aryl compounds containing triazolyl group in almost quantitative yields (>90%). Additional reactions that were carried out utilizing tri-, di- and monohalogenated alkyl halides in the ATRA step provided reasonable yields of functionalized trriazoles. A slightly different approach involving a ligand-free catalytic system (CuSO4 and ascorbic acid) in the first step followed by addition of the TPMA ligand in the second step was applied in the synthesis of polyhalogened polytriazoles. Sequential reactions involving vinylbenzyl azide, tripropargylamine and polyhalogenated methane (CCl4 and CBr4) provided the desired products in quantitative yield in the presence of 10 mol% of the catalyst. Modest yields of functionalized polytriazoles were obtained from the addition of less active tri- and dihalogenated alkyl halides utilizing the same catalyst loading. <br>The last part focuses on copper(I) complexes, which were used catalysts in cyclopropanation reaction. One class represented cationic copper(I)/2,2-bipyridine complexes with p-coordinated styrene [CuI(bpy)(p-CH2CHC6H5)][A] (A = CF3SO3- (1) and PF6- (2) and ClO4- (3). Structural data suggested that the axial coordination of the counterion in these complexes observed in the solid state weak to non-coordinating (2.4297(11) �� 1, 2.9846(12) �� 2, and 2.591(4) �� 3). When utilized in cyclopropanation, complexes 1-3 provided similar product distribution suggesting that counterions have negligible effect on catalytic activity. Furthermore, the rate of decomposition of EDA in the presence of styrene catalyzed by 3 (kobs=(7.7��0.32)��10-3 min-1) was slower than the rate observed for 1 (kobs=(1.4��0.041)��10-2 min-1) or 2 (kobs=(1.0��0.025)��10-2 min-1). On the other hand, tetrahedral copper(I) complexes with bipyridine and phenanthroline based ligands have been reported to have strongly coordinated tetraphenylborate anions. CuI(bpy)(BPh4), CuI(phen)(BPh4) and CuI(3,4,7,8-Me4phen)(BPh4) complexes are the first examples in which BPh4- counterion chelates a transition metal center in bidentate fashion through h2 p-interactions with two of its phenyl rings. The product distribution revealed that the mole percent of trans and cis cyclopropanes were very similar. The observed rate constants (kobs) shown in for decomposition of EDA in the presence of externally added styrene were determined to be kobs=(1.5��0.12)��10-3 min-1, (6.8��0.30)��10-3 min-1 and (5.1��0.19)��10-3 min-1. / Bayer School of Natural and Environmental Sciences / Chemistry and Biochemistry / PhD / Dissertation
2

Roles of Non-thermal Plasma in Gas-phase Glycerol Dehydration Catalyzed by Supported Silicotungstic Acid

Liu, Lu 01 May 2011 (has links)
Acrolein is an indispensable chemical intermediate with a rising demand in recent years. The concern of the increase of propylene prices due to the shrinking supply of nonrenewable crude oil makes the acid-catalyzed gas-phase glycerol dehydration to acrolein a prime candidate for research. Our analysis showed that the sustainable acrolein production from glycerol was both technically and economically viable. Alumina2700® (Al) and Silica1252® (Si) loaded with silicotungstic acid (HSiW) possessed distinct features while provided equally good acrolein yield (73.86mol% and 74.05mol%, respectively) optimally. Due to the unique non-equilibrium characteristics, non-thermal plasma (NTP) could promote a variety of chemical reactions; however, its application in a dehydration process remained blank. This study used the reaction of glycerol dehydration to acrolein to probe whether NTP could 1) improve acrolein yield during dehydration, 2) suppress the coke formation and regenerate the catalyst, and 3) modify the properties of the catalyst. The dielectric barrier discharge configuration was used to generate NTP; various NTP field strengths and also their interaction with temperature and the catalyst were investigated. The results showed that NTP improved the glycerol conversion and that NTP with a proper field strength increased acrolein selectivity. The optimal acrolein yields of 83.6 mol% and 83.1 mol% were achieved with 3.78 kV/cm NTP and 4.58 kV/cm NTP at 275°C for HSiW-Al and HSiW-Si, respectively. The application of NTP-O2 (5% oxygen in argon, 4.58 kV/cm) during glycerol dehydration significantly suppressed coke formation on HSiW-Si. NTP-O2 could regenerate the deactivated HSiW-Si at low temperatures by removing both soft and hard coke at various rates. NTP-O2 with higher field strength, at medium operation temperature (150ºC) and in argon atmosphere was more effective for coke removal/catalyst regeneration. Applying NTP to the catalyst fabrication showed some capabilities in modifying catalyst properties, including enlarging surface area, preserving mesopores, increasing acid strength and Brønsted acidity. NTP with argon as the discharge gas performed better in these modifications than NTP with air as the discharge gas.
3

Synthesis of Functionalized Organic Molecules Using Copper Catalyzed Cyclopropanation, Atom Transfer Radical Reactions and Sequential Azide-Alkyne Cycloaddition

Ricardo, Carolynne Lacar 19 June 2012 (has links)
Copper-catalyzed regeneration in atom transfer radical addition (ATRA) utilizes reducing agents, which continuously regenerate the activator (CuI) from the deactivator (CuII) species. This technique was originally found for mechanistically similar atom transfer radical polymerization (ATRP) and its application in ATRA and ATRC has allowed significant reduction of catalyst loadings to ppm amounts. In order to broaden the synthetic utility of in situ catalyst regeneration technique, this was applied in copper-catalyzed atom transfer radical cascade reaction in the presence of free radical diazo initiators such as 2,2’-azobis(isobutyronitrile) (AIBN) and (2,2’-azobis(4-methoxy-2,4-dimethyl valeronitrile) (V-70), which is the first part of this dissertation. This methodology can be translated to sequential ATRA/ATRC reaction, in which the addition of CCl4 to 1,6-dienes results in the formation 5-hexenyl radical intermediate, which undergoes expedient 1,5-ring closure in the exo- mode to form 1,2-disubstituted cyclopentanes. When [CuII(TPMA)Cl][Cl] complex was used in conjunction with AIBN at 60 0C, cyclic products derived from the addition of CCl4 to 16-heptadiene, diallyl ether and N,N­-diallyl-2,2,2-trifluoroacetamide were synthesized in nearly quantitative yields using as low as 0.02 mol% of the catalyst (relative to 1,6-diene). Even more impressive were the results obtained utilizing tert­-butyl-N,N-diallylcarbamate and diallyl malonate using only 0.01 mol% of the catalyst. Cyclization was also found to be efficient at ambient temperature when V-70 was used as the radical initiator. High product yields (>80%) were obtained for mixtures having catalyst concentrations between 0.02 and 0.1 mol%. Similar strategy was also conducted utilizing unsymmetrical 1,6-diene esters. It was found out that dialkyl substituted substrates (dimethyl-2-propenyl acrylate and ethylmethyl-2-propenyl acrylate) underwent 5-exocyclization producing halogenated g-lactones after the addition of CCl4 in the presence of 0.2 mol% of [CuII(TPMA)Cl][Cl]. Based on calculations using density functional theory (DFT) and natural bond order (NBO) analysis, cyclization of 1,6-diene esters was governed by streoelectronic factors. <br>As a part of broadening the synthetic usefulness of in situ copper(I) regeneration, scope was further extended to sequential organic transformations. Based on previous studies, copper(I) catalyzed [3+2] azide-alkyne cycloaddition is commonly conducted via in situ reduction of CuII to CuI species by sodium ascorbate or ascorbic acid. At the same time, ATRA reactions have been reported to proceed efficiently via in situ reduction of CuII complex to the activator species or CuI complex has been fulfilled in the presence of ascorbic acid. Since the aforementioned reactions share similar catalyst in the form of copper(I), a logical step was taken in performing these reactions in one-pot sequential manner. Reactions involving azidopropyl methacrylate and 1-(azidomethyl)-4-vinylbenzene in the presence of a variety of alkynes and alkyl halides, catalyzed by as low as 0.5 mol-% of [CuII(TPMA)X][X] (X=Br-, Cl-) complex, proceeded efficiently to yield highly functionalized (poly)halogenated esters and aryl compounds containing triazolyl group in almost quantitative yields (>90%). Additional reactions that were carried out utilizing tri-, di- and monohalogenated alkyl halides in the ATRA step provided reasonable yields of functionalized trriazoles. A slightly different approach involving a ligand-free catalytic system (CuSO4 and ascorbic acid) in the first step followed by addition of the TPMA ligand in the second step was applied in the synthesis of polyhalogened polytriazoles. Sequential reactions involving vinylbenzyl azide, tripropargylamine and polyhalogenated methane (CCl4 and CBr4) provided the desired products in quantitative yield in the presence of 10 mol% of the catalyst. Modest yields of functionalized polytriazoles were obtained from the addition of less active tri- and dihalogenated alkyl halides utilizing the same catalyst loading. <br>The last part focuses on copper(I) complexes, which were used catalysts in cyclopropanation reaction. One class represented cationic copper(I)/2,2-bipyridine complexes with p-coordinated styrene [CuI(bpy)(p-CH2CHC6H5)][A] (A = CF3SO3- (1) and PF6- (2) and ClO4- (3). Structural data suggested that the axial coordination of the counterion in these complexes observed in the solid state weak to non-coordinating (2.4297(11) Å 1, 2.9846(12) Å 2, and 2.591(4) Å 3). When utilized in cyclopropanation, complexes 1-3 provided similar product distribution suggesting that counterions have negligible effect on catalytic activity. Furthermore, the rate of decomposition of EDA in the presence of styrene catalyzed by 3 (kobs=(7.7±0.32)´10-3 min-1) was slower than the rate observed for 1 (kobs=(1.4±0.041)´10-2 min-1) or 2 (kobs=(1.0±0.025)´10-2 min-1). On the other hand, tetrahedral copper(I) complexes with bipyridine and phenanthroline based ligands have been reported to have strongly coordinated tetraphenylborate anions. CuI(bpy)(BPh4), CuI(phen)(BPh4) and CuI(3,4,7,8-Me4phen)(BPh4) complexes are the first examples in which BPh4- counterion chelates a transition metal center in bidentate fashion through h2 p-interactions with two of its phenyl rings. The product distribution revealed that the mole percent of trans and cis cyclopropanes were very similar. The observed rate constants (kobs) shown in for decomposition of EDA in the presence of externally added styrene were determined to be kobs=(1.5±0.12)´10-3 min-1, (6.8±0.30)´10-3 min-1 and (5.1±0.19)´10-3 min-1. / Bayer School of Natural and Environmental Sciences / Chemistry and Biochemistry / PhD / Dissertation
4

Modélisation, simulation et optimisation des réacteurs de production d'acroléine à partir du propylène ou du glycérol / Modeling, simulation and optimization of reactors for acroléin production from propylene or glycerol

Lei, Minghai 03 September 2014 (has links)
Ce travail est consacré à la modélisation, simulation et optimisation des réacteurs catalytiques gaz/solide à lit fixe multitubulaire pour la production de l'acroléine à partir du propylène ou du glycérol. La première partie du travail traite de l'oxydation catalytique du propylène en acroléine. Différents modèles cinétiques et du réacteur ont été développés. Les paramètres inconnus mis en jeu sont identifiés à partir des mesures expérimentales. Un ensemble de variables opératoires qui maximisent les rendements des produits clés ont ensuite été déterminés en utilisant le modèle validé. La seconde partie du travail concerne la production d'acroléine à partir du glycérol. Elle comprend une étape de déshydratation du glycérol et une étape de régénération du catalyseur. Un modèle hétérogène bidimensionnel a été développé. Pour la régénération du catalyseur, un modèle cinétique qui permet d'identifier la concentration et les compositions initiales du coke et de prédire le processus de sa combustion a été développé et identifié à l'aide de mesures expérimentales. L'optimisation de l'étape de régénération du catalyseur a ensuite été effectuée. Pour l'étape de déshydratation, un modèle cinétique qui permet de simuler simultanément la déshydratation du glycérol, la formation du coke et la variation de l'activité du catalyseur a été développé et identifié à l'aide de mesures expérimentales. / In this work, modeling, simulation and optimization of multitubular gas/solid fixed bed catalytic reactors for acrolein production from propylene or from glycerol are investigated. The first part of the work deals with the catalytic oxidation of propylene to acrolein. Different kinetic and reactor models are developed and the unknown parameters involved are identified from experimental measurements. A set of operating variables that maximize the yield of key products then determined using the validated reactor model. The second part of the work is devoted to the production of acrolein from glycerol. This part consists of two steps: a glycerol dehydration step and a catalyst regeneration step. A two-dimensional heterogeneous model is developed. In the catalyst regeneration step, a kinetic model enabling the identification of the concentration and initial compositions of the coke and the prediction of its combustion process is developed and identified using experimental measurements. The optimization of the operating conditions of the regeneration step is then carried out. In the dehydration step, a kinetic model that allows the simultaneous simulation of glycerol dehydration, coke formation and catalyst activity variation is developed and identified by means of experimental measurements.

Page generated in 0.1184 seconds