Spelling suggestions: "subject:"cathode "" "subject:"kathode ""
131 |
Optimisation de la cathode pour pile à combustible à oxyde électrolyte solide : approches expérimentale et numérique / An experimental and numerical approach for tuning the cathode for high performance IT-SOFCCelikbilek, Ozden 09 December 2016 (has links)
Comprendre, contrôler et optimiser le mécanisme de la réaction de réduction de l’oxygène à la cathode, cette démarche devient une nécessité pour améliorer les dispositifs de conversion d'énergie de haute performance tels que les piles à combustible à oxyde électrolyte solide (PAC). Des films poreux à conduction mixte, ionique et électronique (MIEC) et leurs composites comprenant un conducteur ionique offrent des propriétés uniques. Cependant, la corrélation des propriétés intrinsèques des composants d'électrodes aux caractéristiques microstructurales reste une tâche difficile. Dans le cadre de cette thèse, la couche fonctionnelle de cathode de La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) pure et du composite LSCF/Ce0.9Gd0.1O2-δ (CGO) a été élaborée par la technique d’atomisation électrostatique. Une microstructure à porosité hiérarchique a été obtenue dans un domaine nanométrique à micrométrique. Les films ont été recouverts d’un collecteur de courant (CCL), LSCF, par sérigraphie. Une étude paramétrique a été réalisée expérimentalement pour optimiser la double couche en termes de taille de particules, de composition et d'épaisseur des couches de CFL et CCL. En se basant sur ces résultats, un modèle éléments finis 3D a été développé en utilisant les paramètres microstructuraux déterminés par tomographie de FIB-SEM dans une géométrie simple, similaire à des caractéristiques colonnaires. Dans ce travail, un guide de conception du matériau d’électrode a été proposé reliant des performances électrochimiques optimisées à la microstructure et aux propriétés du massif en combinant une étude expérimentale et une étude théorique de modélisation. Une cellule complète de PAC intégrant la cathode optimisée double couche de LSCF a été testée dans des conditions réelles d'exploitation. / Understanding, controlling and optimizing the mechanism of oxygen reduction reaction at the cathode need to be addressed for high performance energy conversion devices such as solid oxide fuel cells (SOFCs). Structured porous films of mixed ionic electronic conductors (MIECs) and their composites with addition of a pure ionic conductor offer unique properties. However, correlating the intrinsic properties of electrode components to microstructural features remains a challenging task. In this PhD thesis, cathode functional layers (CFL) of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) and LSCF/Ce0.9Gd0.1O2-δ (CGO) composite cathodes with hierarchical porosity from nano- to micro-range are fabricated by electrostatic spray deposition technique. The films were topped with LSCF as a current collecting layer (CCL) by screen printing technique. A parametric optimization study was conducted experimentally in terms of particle size, composition, and thickness of CFL and CCL layers. The experimental results were supported by a numerical 3D Finite Element Model (FEM). Microstructural parameters determined by FIB-SEM tomography were used in a simple geometry similar to experimentally observed columnar features. In this work, experimental results and modelling were combined to provide design guidelines relating optimized electrochemical performances to the microstructure and bulk material properties. A complete fuel cell with optimized cathode film was tested in real SOFC operational conditions.
|
132 |
Synthèse électrochimique de dérivés bas-valents de samarium pour des applications électrosynthétiques et catalytiques / Electrochemical synthesis of low-valent samarium derivatives for electrosynthetic and catalytic applicationsSun, Linhao 18 December 2013 (has links)
Depuis la découverte par le Pr. Kagan en 1977 de conditions douces de synthèse du diiodure de samarium (SmI2), ce réactif est rapidement devenu un des meilleurs réducteurs chimiques utilisé en synthèse organique. Cependant, en tant que réducteur mono-électronique, il est souvent employé en quantité sur-stœchiométrique ce qui impose l’utilisation de quantité importante de réactif qui possède par ailleurs une faible solubilité dans le THF (solvant de choix pour ce réactif) ce qui impose également de trop importantes quantités de solvant. Dans ce travail de thèse, nous nous sommes intéressés à l’utilisation de l’électrochimie comme alternative de synthèse de SmI2 pour apporter un certain nombre de solutions aux limitations manifestes de l’utilisation de ce réactif.Dans un premier temps nous avons mis en œuvre une méthode de synthèse du SmI2 grâce à l’utilisation originale d’une anode "sacrificielle" de samarium. Le SmI2 électrogénéré, dosé et parfaitement caractérisé nous a permis de réaliser différentes réactions de formation de liaisons carbone-carbone médiées par ce réactif. Le SmI2 est produit et consommé en continu ce qui réduit considérablement les quantités de solvant habituellement exigées. Cette approche a également permis de préparer et de caractériser d’autres dérivés divalents de samarium souvent plus difficiles à synthétiser. Nous avons ensuite exploré la possibilité d’exploiter cette approche électrochimique pour la mise en place d’une nouvelle procédure catalytique en SmI2. Après avoir mis en évidence l’efficacité de la réduction électrochimique de sels trivalents de samarium en dérivés divalents grâce à l’emploi d’une cathode de samarium, nous avons établi les conditions opératoires d’une nouvelle procédure catalytique en SmI2 assistée par électrochimie évitant ainsi tout additif métallique. Cette approche catalytique a été appliqué avec succès dans différentes réactions de couplage. / Since the seminal reports of Kagan, dedicated to the preparation of samarium diiodides and its usefulness in organic synthesis, SmI2 became one of the most important reducing agents available to the synthetic organic chemist, promoting a multitude of radical and anionic reactions. However, the major limitations according to its preparation remains the concentration of SmI2 in THF (around 0.1M) and the inert atmosphere needed during its manipulation. Therefore, the majority of organic reactions mediated by SmI2 as reductive reagent require a stoichiometric amount or even a large excess.We report herein a new electrochemical method to prepare solutions of samarium diiodide in THF. The simple electrolysis of a samarium rod provides a rapid and straightforward in situ synthesis of SmI2. The electrogenerated complex catalyzes various C-C bond formations. The reagent is produced continuously and leads to efficient organic electrosynthesis with significantly smaller amounts of solvent than usually required. Moreover, samarium metal has been then used for the first time as electrode material to perform an efficient and versatile SmI2 catalytic system assisted by electrochemistry. The established electrocatalytic procedure that excludes any metal additives was successfully applied in various transformations mediated by this useful reagent.
|
133 |
Accumulateur lithium-ion à cathode de fluorures de métaux de transition / Transition metal fluoride for lithium-ion batteries applicationsDelbegue, Diane 25 September 2017 (has links)
Les batteries lithium ions sont la technologie de référence pour le stockage électrochimique de l’énergie. Cependant, les matériaux cathodiques de ces batteries comme LiCoO2, LiMn2O4 ou LiFePO4 présentent une capacité spécifique limitée (<160 mAh/g). De nombreux composés sont à l’étude pour améliorer cette performance dont le fluorure de fer (III) en raison de sa capacité théorique de 711 mAh.g-1. Ce travail présentera la synthèse de FeF3 par différentes méthodes de fluoration. Les matériaux obtenus seront comparés en termes de structures et de liaison (DRX, Mössbauer, spectroscopies IR et Raman) mais aussi de texture (isothermes d’adsorption à l’azote à 77K). Les propriétés électrochimiques des matériaux obtenus seront également comparées et testées. Enfin, l’étude du mécanisme électrochimique de cette famille de composés sera menée via une méthode de caractérisation « in operando » : la spectroscopie d’absorption des rayons X (XAS). / The lithium-ion batteries are the current solution for electrochemical energy storage. However, their performances are limited by the cathode materials, such as LiCoO2, LiMn2O4 or LiFePO4 of specific capacity lower than 160 mAh/g. Many materials are good candidates to improve this capacity such as iron trifluoride of theoretical capacity of 711 mAh.g-1. This work will present the synthesis of FeF3 through different fluorination ways. The resulting materials will be characterized owing to their structure by XRD, Mössbauer, Raman and IR spectroscopies and their texture by nitrogen adsorption isotherms at 77K and SEM. After that, the electrochemical properties will be evaluated and compared. Finally, the study of the electrochemical mechanism of this family of compounds will be led with a method of characterization “in operando” : the X-rays absorption spectroscopy (XAS).
|
134 |
Environment Friendliness & Recycling Options For Cathode Ray Tube (CRT) TelevisionsGarg, Ankit January 2011 (has links) (PDF)
Environment friendly products can be defined as products which show significant environmental improvements made at their most important life-cycle stages. For durable goods, life-cycle stages include manufacturing, use, and end-of-life of product. Reverse Supply Chain Management is the process of planning, implementing, and controlling the efficient, cost effective flow of raw materials, in-process inventory, finished goods and related information from the point of consumption to the point of origin for the purpose of recapturing value and/or proper disposal.
The efficient and proper use of 5R’s processes namely Remanufacturing, Refurbishment, Reuse,
Repair; and Recycle help the product to be greener and environment friendly. Part of the process also includes the proper disposal of goods which is essential for maintaining a green environment.
This study aims at finding the significant factors to be considered by Cathode Ray Tube (CRT) Television component manufacturers to manufacture Environment Friendly Product. Various parameters like raw material procurement; water and energy consumption in product manufacturing; the extent of environmental regulations followed; waste production; and waste processing have been considered in this study.
A Case Study has been prepared to study the entire manufacturing process of a CRT Television. The case study also looks at the regulations followed by CRT TV component manufacturers in India and how they are different from other countries. An attempt has been made to find out the value which can be recovered at the End-Of-Life of CRT TVs. The case also looks at safe recycling options for CRT TVs.
The study shows that CRT TV component manufacturers consider Resource Procurement, Energy Utilization; and Compliance with Regulations to a significant extent. Also, an attempt has been made to develop an Environmental Friendly Index (EFI). The EFI depends on resource procurement, energy utilization, waste production, waste processing, and existence of environmental team in the company. There have been no steps taken by these component manufacturers towards dealing with return goods. All the return goods are dealt with by recyclers, who extract the material through unscientific and non-environmental friendly ways. The recyclers are not able to extract all the useful material, which if done in an efficient way, will result in more material recovery.
|
135 |
Propriétés de conduction mixte O2- / H+ / e- dans quelques phases dérivées de la perovskite : application aux cathodes de piles à combustible H+-SOFC / Mixed conduction O2- / H+ / e- properties in some phases derived from perovskite : application as H+-SOFC cathodeGrimaud, Alexis 13 December 2011 (has links)
La pile à combustible H+-SOFC (Protonic Conducting Solid Oxide Fuel Cell) basée surl’utilisation d’un électrolyte conducteur protonique peut représenter une alternative intéressanteà la pile SOFC qui présente actuellement le meilleur rendement. Cependant, la surtension à lacathode reste élevée et ce travail est dédié à la compréhension du mécanisme de réductionl'oxygène à cette électrode.Différents matériaux conducteurs mixtes O2- / e- de structures dérivées de la perovskite ABO3,tels que les doubles perovskites LnBaM2O5+d (Ln = Pr, Nd et Gd et M = Co et Fe) ainsi que lesphases de Ruddlesden-Popper A2MO4+d (Ln = Pr et Sr et M = Ni), ont été étudiés. Leur niveaude conductivité électronique ainsi que leur non-stoechiométrie en oxygène ont d’abord étédéterminées. Puis, à l’aide de la détermination des coefficients de diffusion de l’oxygène par laméthode de relaxation de conductivité électrique, leur conductivité ionique O2- a été estimée.Une étude électrochimique et plus spécialement la détermination des étapes limitant la réactionde réduction de l’oxygène à la cathode de pile H+-SOFC a ensuite permis de démontrer le rôledu proton dans le mécanisme de réaction pour les matériaux présentant les meilleuresperformances électrochimiques.Enfin, dans le cadre d’un projet ANR HPAC 2009 « CONDOR », des mono-cellules de piles H+-SOFC ont été mises en forme et des densités de puissance proche de 180 mW/cm² à 0.6 V à600°C ont été obtenues. / The H+-SOFC (Protonic Conducting Solid Oxide Fuel Cell) based on a protonic conductingelectrolyte can represent an interesting alternative to the SOFC fuel cell. Nevertheless, the highcathodic overpotential remains a severe drawback and this thesis is dedicated to the study of theunderstanding of the oxygen reduction at the cathode.Several mixed O2- / e- conductors derived from perovskite ABO3 such as double perovskiteLnBaM2O5+d and Ruddlesden Popper phases A2MO4+d were studied. Their electronic conductivityas well as their oxygen non-stoichiometry were first determined. Then, their oxygen diffusioncoefficients were measured using the electrical conductivity relaxation method and their O2-conductivity estimated. Rate determining steps of the oxygen reduction reaction weredetermined from electrochemical measurements and it was shown that proton is involved in theoxygen reduction for materials showing the best electrochemical performances.Finally, single H+-SOFC cells were developed in the framework of the ANR HPAC 2009 project“CONDOR” and power densities of about 180 mW/cm² at 0.6 V at 600°C were obtained.
|
136 |
DESIGN AND FABRICATION OF HIGH CAPACITY LITHIUM-ION BATTERIES USING ELECTRO-SPUN GRAPHENE MODIFIED VANADIUM PENTOXIDE CATHODESAmirhossein Ahmadian (7035998) 17 December 2020 (has links)
<p>Electrospinning
has gained immense interests in recent years due to its potential application
in various fields, including energy storage application. The V<sub>2</sub>O<sub>5</sub>/GO
as a layered crystal structure has been demonstrated to fabricate nanofibers
with diameters within a range of ~300nm through electrospinning technique. The porous,
hollow, and interconnected nanostructures were produced by electrospinning formed
by polymers such as Polyvinylpyrrolidone (PVP) and Polyvinyl alcohol (PVA),
separately, as solvent polymers with electrospinning technique. </p>
<p> </p>
<p>In this study, we investigated the synthesis of a graphene-modified nanostructured V<sub>2</sub>O<sub>5</sub> through modified sol-gel method and electrospinning
of V<sub>2</sub>O<sub>5</sub>/GO hybrid. Electrochemical
characterization was performed by utilizing Arbin Battery cycler,
Field Emission Scanning Electron
Microscopy (FESEM), X-ray powder diffraction (XRD), Thermogravimetric analysis (TGA), Mercury Porosimetery, and BET surface area
measurement. </p>
<p> </p>
<p>As compared to the
other conventional fabrication methods, our optimized sol-gel method, followed
by the electrospinning of the cathode material achieved a high initial capacity
of <b>342 mAh/g</b> at a high current density of 0.5C (171 mA/g) and the
capacity retention of ~80% after 20 cycles. Also, the prepared sol-gel method
outperforms the pure V<sub>2</sub>O<sub>5 </sub>cathode material, by obtaining
the capacity almost two times higher.</p>
<p>The results of
this study showed that post-synthesis treatment of cathode material plays a prominent
role in electrochemical performance of the nanostructured vanadium oxides. By controlling the
annealing and drying steps, and time, a small amount of pyrolysis carbon can be
retained, which improves the conductivity of the V<sub>2</sub>O<sub>5</sub>
nanorods. Also, controlled post-synthesis helped us to prevent aggregation of
electro-spun twisted nanostructured fibers which deteriorates the lithium
diffusion process during charge/discharge of batteries.</p>
|
137 |
MECHANICS AND DYNAMICS OF PARTICLE NETWORK IN COMPOSITE ELECTRODESNikhil Sharma (16648830) 04 August 2023 (has links)
<p>Energy storage devices have become an integral part of the digital infrastructure of the 21st century. Li-ion batteries are a widely used chemical form of energy storage devices comprising components with varied chemical, mechanical and electrochemical properties. Over long-term usage, the anode and cathode experience spatially heterogeneous Li reaction, mechanical degradation, and reversible capacity loss. The small particle size and environmental sensitivity of materials used in Li-ion battery materials make investigating electrodes' electrochemical and mechanical properties an arduous task. Nevertheless, understanding the effect of electrochemical fatigue load (during the battery's charging and discharging process) on composite electrodes' mechanical stability is imperative to design and manufacture long-lasting energy storage devices.</p><p>Due to the low-symmetry lattice, Lithium Nickel Manganese Cobalt Oxide (NMC) cathode materials exhibit direction-dependent (anisotropic) mechanical properties. In this Dissertation, we first measure the anisotropic elastic stiffness of NMC cathode material using nano-indentation. We also determine the effect of Ni stoichiometry on the indentation modulus, hardness, and fracture toughness of NMC materials. The complete information on the mechanical properties of cathode materials will enable accurate computational results and the design of robust cathodes.</p><p>Further, using operando optical experiments, we report that NMC porous composite cathode experiences asynchronous reactions only during the 1st charging process. Non-uniform carbon binder network coverage across the cathode and Li concentration-dependent material properties of NMC results in the initial asynchronous phenomenon. The information on the degree of electrochemical conditioning of Li-ion battery cathode obtained from optical microscopy can test the consistency of product quality in the industrial manufacturing process. We also investigate the effects of non-uniform reactions on active material’s local morphology change and study the evolution of particle network over long-term cycling. Reported data from experiments depicts that in the early cycles, individual particles’ characteristics significantly influence the degree of damage across the cathode.</p><p>However, the interaction with neighboring particles becomes more influential in later cycles. Computational modeling uses a multiphysics-based theoretical framework to explain the interplay between electrochemical activity and mechanical damage. The methodology, theoretical framework, and experimental procedure detailed here will enable the design of efficient composite electrodes for long-lasting batteries.</p>
|
138 |
Synthèse et caractérisation électrochimique de liquides ioniques à base de phosphonium pour les applications aux batteries au lithiumKwamou Kouayep, Bertrand Mirador January 2014 (has links)
Les besoins énergétiques de la population mondiale ne cessent de croître, cette croissance est beaucoup plus attribuée à la venue de nouveaux consommateurs des pays émergents. Les réserves de gisement de pétrole fossile, principale source d’énergie de notre civilisation ne suivant pas la demande, la recherche de nouvelles sources d’énergie ou compléments énergétiques de ceux classiques demeure un challenge important pour l’avenir de notre société. Les batteries au lithium demeurent une réponse dite énergie renouvelable pour la lutte que se livrent les pays du globe pour limiter l’échéance de la fin des énergies nécessaires à la survie de notre système économique. Cette batterie offre des performances énergétiques plus grandes que celle alcaline par exemple. Ce travail s’inscrit dans la lignée de l’amélioration continue de la technologie des batteries lithium- ion. Cette amélioration passe par l’optimisation des différentes composantes des piles au lithium comme les électrodes (anode et cathode) et les électrolytes (solvants et ion principal à base de lithium). Ainsi, ce travail comporte trois parties. Dans un premier temps, nous avons investigué de nouveaux solvants dits liquides ioniques à base de phosphonium, ces solvants étant tous des précurseurs respectifs de tri-n-buthylphosphine et tri-n-éthylphosphine (TBPhexTFSI, TBPmetTFSI, TBPhoxTFSI, TBPmetOetTFSI, TEPhexTFSI et TEPhoxTFSI, voir la liste des abréviations). Le choix de ces liquides ioniques à base de phosphonium a été fait dans l’optique de la recherche de ceux ayant les meilleures propriétés chimico-physiques et électrochimiques. De ce fait, les mesures de ces propriétés physico-chimiques comme leur conductivité, viscosité, stabilité thermique ont été effectuées. La supériorité des liquides à base de phosphonium ayant des cations à chaîne oxygénée sur ceux non oxygénées a été démontrée. La conductivité du TBPhoxTFSI respectivement supérieure à celle du TBPhexTFSI et la viscosité de TBPhoxTFSI est inférieure à celle du TBPhexTFSI). Cette étude a aussi démontré l’importance d’avoir des liquides ioniques de phosphonium à cation asymétrique de petite dimension pour bénéficier des meilleures propriétés chimico-physiques, notamment les conductivités des TEPhexTFSI et TEPhoxTFSI étant meilleures que celle du TBPhexTFSI et TBPhoxTFSI.
Les études électrochimiques, notamment la voltampérométrie cyclique à balayage, ont permis d’étudier les fenêtres de potentiel électrochimique de certains de ces liquides ioniques. Il a été démontré que les liquides ioniques ayant un cation à chaîne carbonylée asymétrique courte et non oxygénée ont des fenêtres de potentiel électrochimique plus large (respectivement 5 et 5,5V pour le TBPmetTFSI et TEPhexTFSI). Notre étude s’est basée seulement sur deux liquides ioniques ayant pour précurseur la tri-n-buthylphosphine : le TBPmetTFSI et le TBPhoxTFSI. Le choix de ces deux liquides ioniques de phosphonium découle aussi des études effectuées sur leurs propriétés chimico-physiques intéressantes.
Dans l’amélioration des composantes des batteries lithium-ion, la recherche des meilleures électrodes demeure aussi un enjeu stratégique important dans cette technologie. Les cathodes à plus grande capacité énergétique sont dans cette logique. Les cathodes des piles rechargeables au lithium sont composées de matériaux du type oxydes mixtes des métaux de transition. Un des facteurs importants du choix de ces matériaux est la diffusion rapide du lithium dans leur structure interne c’est-à-dire la vitesse des réactions d’intercalations et de désintercalations des ions de lithium pendant le fonctionnement de ces types de piles. Les matériaux dits à structure cristalline olivine type LiFePO[indice inférieur 4] ont eu une grande percée il y a environ 10 ans. De nos jours ils sont encore présents, mais de façon améliorée par l’ajout des additifs de carbone généralement dans un pourcentage de 7 à 10% en poids et prennent le nom de LiFePO[indice inférieur 4]/C. Nous avons ainsi réussi à synthétiser par approche sol-gel le LiFePO[indice inférieur 4]/C ; ce matériau a ensuite été caractérisé par diffraction à rayon-X, par microscope électronique à balayage (MEB) et comparé à ce matériau de LiFePO[indice inférieur 4] commercial de la compagnie MTI Corporation. Deux conditions expérimentales ont été utilisées pour les caractérisations électrochimiques de ces cathodes de LiFePO[indice inférieur 4] commercial et LiFePO[indice inférieur 4]/C, soit dans les électrolytes classiques 1M LiPF[indice inférieur 6]–EC-DMC (3/7 vol) et dans les électrolytes mixtes 1M LiPF[indice inférieur 6]–EC-DMC (3/7 vol.) + x TBPmetTFSI ou TBPhoxTFSI. Les voltampérogrammes cycliques obtenus dans ces conditions classiques et mixtes ont démontré que les liquides ioniques TBPmetTFSI et TBPhoxTFSI pouvaient être utilisés comme additifs aux solvants classiques jusqu’à des concentrations de 50% en volume de ceux classiques comme EC-DMC (3/7 vol.) tout en favorisant les processus d’intercalation et dedésintercalation du lithium durant le cycle de fonctionnement des batteries lithium-ion. La quasi-réversibilité des pics redox dans ces proportions des liquides ioniques est un indice de bon fonctionnement des batteries lithium-ion avec des électrolytes mixtes composés de solvants classiques et de liquides ioniques à base de phosphonium.
|
139 |
In situ characterization of electrochemical processes of solid oxide fuel cellsLi, Xiaxi 07 January 2016 (has links)
Solid oxide fuel cells (SOFCs) represent a next generation energy source with high energy conversion efficiency, low pollutant emission, good flexibility with a wide variety of fuels, and excellent modularity suitable for distributed power generation. As an electrochemical energy conversion device, SOFC’s performance and reliability depend sensitively on the catalytic activity and stability of the electrode materials. To date, however, the development of electrode materials and microstructures is still based largely on trial-and-error methods because of inadequate understanding of the mechanisms of the electrode processes. Identifying key descriptors/properties of electrode materials or functional heterogeneous interfaces, especially under in situ conditions, may provide guidance to the design of electrode materials and microstructures. This thesis aims to gain insight into the electrochemical and catalytic processes occurring on the electrode surfaces using unique characterization tools with superior sensitivity, high spatial resolution, and excellent surface specificity applicable under in situ/operando conditions.
Carbon deposition on nickel-based anodes is investigated with in situ Raman spectroscopy and SERS. Analysis shows a rapid nucleation of carbon deposition upon exposure to small amount of propane. Such nucleation process is sensitive to the presence of surface coating (e.g., GDC) and the concentration of steam. In particular, operando analysis of the Ni-YSZ boundary indicates special function of the interface for coking initiation and reformation.
The coking-resistant catalysts (BaO, BZY, and BZCYYb) are systematically studied using in situ Raman spectroscopy, SERS, and EFM. In particular, time-resolved Raman analysis of the surface functional groups (-OH, -CO3, and adsorbed carbon) upon exposure to different gas atmospheres provides insight into the mechanisms related to carbon removal. The morphology and distribution of early stage carbon deposition are investigated with EFM, and the impact of BaO surface modification is evaluated.
The surface species formed as a result of sulfur poisoning on nickel-based anode are examined with SERS. To identify the key factors responsible for sulfur tolerance, model cells with welldefined electrode-electrolyte interfaces are systematically studied. The Ni-BZCYYb interface exhibits superior sulfur tolerance.
The oxygen reduction kinetics on LSCF, a typical cathode material of SOFC, is studied using model cells with patterned electrodes. The polarization behaviors of these micro- electrodes, as probed using a micro-probe impedance spectroscopy system, were correlated with the systematically varied geometries of the electrodes to identify the dominant paths for oxygen reduction under different electrode configurations. Effects of different catalyst modifications are also evaluated to gain insight into the mechanisms that enhance oxygen reduction activity.
The causes of performance degradation of LSCF cathodes over long term operation are investigated using SERS. Spectral features are correlated with the formation of surface contamination upon the exposure to air containing Cr vapor, H2O, and CO2. Degradation in cathode performance occurs under normal operating conditions due to the poisoning effect of Cr from the interconnect between cells and the high operating temperature. The surface-modified LSCF cathode resists surface reactions with Cr vapor that impairs electrode performance, suggesting promising ways to mitigate performance degradation.
|
140 |
Thick magnetic electron lens Beta-ray spectrometer, its theory construction and its application for the measurement of energy spectraJnanananda, Swami January 1943 (has links)
No description available.
|
Page generated in 0.0441 seconds