Spelling suggestions: "subject:"cavité dde grande finest"" "subject:"cavité dee grande finest""
1 |
Interaction optomécanique à trois modes et refroidissement d'un micro-résonateur mécaniqueMolinelli, Chiara 24 June 2011 (has links) (PDF)
Dans ce manuscrit nous présentons une expérience de mesure optique ultrasensible des vibrations mécaniques d'un micro-miroir dans une cavité Fabry-Perot de grande finesse. Le micro-miroir est constitué d'un résonateur de taille micrométrique en silicium, de fréquence de résonance de l'ordre du mégahertz, sur lequel est déposé un traitement optique de haute réflectivité. La sensibilité très élevée des mesures interférométriques est en principe suffisante pour observer les fluctuations quantiques de point zéro du résonateur. Pour atteindre le régime où l'énergie d'agitation thermique du micro-résonateur devient négligeable devant celle de l'état quantique fondamental, sa température doit être inférieure à 30 microKelvin. Afin d'approcher cette température, nous avons utilisé à la fois des méthodes cryogéniques traditionnelles et une technique de refroidissement laser basée sur les effets dynamiques de la pression de radiation dans une cavité désaccordée. Nous avons ainsi étudié la possibilité de combiner mesures optiques de haute sensibilité et cryogénie en plaçant le micro-résonateur et la cavité dans un cryostat à circulation d'hélium liquide. Nous avons mesuré le spectre de bruit thermique à température cryogénique et réalisé un refroidissement par pression de radiation du micro-résonateur. Nous avons également étudié un nouveau mécanisme de couplage optomécanique à trois modes, à bandes latérales résolues, plus efficace pour refroidir un micro-résonateur. Nous avons mis en évidence à la fois un effet de réduction et d'augmentation de la température effective du micro-miroir selon le couplage des modes optiques. Cette technique permet également d'étudier le phénomène des instabilités paramétriques pouvant apparaître dans les interféromètres gravitationnels de seconde génération.
|
2 |
Etude des effets de pression de radiation et des limites quantiques du couplage optomécaniqueVerlot, P. 24 September 2010 (has links) (PDF)
En mécanique quantique, toute mesure est responsable d'une action en retour sur le système mesuré, qui limite en général la sensibilité de la mesure. Il en est ainsi dans les mesures interférométriques, où les miroirs de l'interféromètre sont susceptibles de se déplacer sous l'effet de la pression de radiation exercée par la lumière. Nous présentons une expérience visant à mettre en évidence ces limites, basée sur la détection ultra-sensible des déplacements d'un miroir mobile inséré dans une cavité Fabry-Perot de très grande finesse. Grâce aux améliorations que nous avons apportées à ce dispositif, nous avons observé des corrélations entre un bruit classique d'intensité et la phase de faisceaux lumineux, induites par couplage optomécanique avec le miroir mobile. Nous décrivons les conditions expérimentales nécessaires pour prolonger ces expériences au niveau quantique, afin d'observer les corrélations optomécaniques produites par les fluctuations quantiques de la pression de radiation, mais aussi pour réaliser une mesure quantique non destructive de la lumière par des moyens purement mécaniques. Nous présentons également plusieurs conséquences de la pression de radiation que notre montage nous a permis de mettre en évidence : annulation de l'action en retour dans les mesures de longueur ou de force, refroidissement laser du miroir dans une cavité désaccordée, et enfin un effet dynamique de l'action en retour qui conduit à l'amplification d'un signal par la mise en mouvement du miroir. Cet effet, prédit dans le cadre de la détection interférométrique des ondes gravitationnelles, devrait permettre d'améliorer la sensibilité au-delà de la limite quantique standard, qui devrait être atteinte dans les antennes gravitationnelles de seconde génération.
|
3 |
Couplage optomécanique, action en retour et limites quantiques dans les mesures optiques ultrasensiblesCaniard, Thomas 19 July 2007 (has links) (PDF)
Nous présentons une expérience de mesure optique ultrasensible de petits déplacements d'un miroir. Grâce à l'utilisation d'une cavité Fabry-Perot de très grande finesse, nous avons atteint une sensibilité de 10-20 m.Hz-1/2 sur une plage de plusieurs centaines de kilohertz.<br /><br />Notre montage permet de mener une étude approfondie des sources de bruit dans une mesure optique et des limites de sensibilité associées. Nous nous intéressons en particulier au couplage optomécanique résultant de l'action réciproque entre la lumière et un miroir mobile. Par l'intermédiaire de la force de pression de radiation, les fluctuations quantiques d'intensité du faisceau génèrent un bruit de position supplémentaire du miroir. Ce bruit constitue l'action en retour de la mesure de position et entraîne l'existence de limites quantiques de sensibilité.<br /><br />Parmi les améliorations réalisées sur le montage, nous avons mis en place un système de double injection de faisceaux laser dans la cavité afin d'étudier les effets quantiques du couplage optomécanique. Nous avons mis en évidence une suppression de l'action en retour de la mesure par interférence destructive entre les réponses des deux miroirs formant la cavité. Nous discutons des applications potentielles de cet effet afin d'améliorer la sensibilité des mesures optiques, notamment pour les détecteurs doublement résonnants d'ondes gravitationnelles.
|
4 |
Caractérisation du couplage optomécanique entre la lumière et un miroir : bruit thermique et effets quantiquesBriant, Tristan 12 December 2003 (has links) (PDF)
Nous présentons une expérience de mesure optique ultrasensible de petits déplacements d'un miroir placé dans une cavité Fabry-Perot de grande finesse, avec une sensibilité au niveau de l'attomètre. <br />Nous avons mesuré le bruit thermique du miroir et suivi son évolution temporelle dans l'espace des phases. Nous avons refroidi le miroir en exerçant une force de friction froide et obtenu une compression du bruit thermique dans l'espace des phases. <br />Une étude spatiale des modes acoustiques internes a été réalisée pour différentes géométries du miroir, en balayant une force de pression de radiation sur la surface du miroir. Les résultats valident les modèles théoriques utilisés pour les interféromètres gravitationnels et permet de définir une géométrie favorable à la démonstration des effets quantiques du couplage optomécanique. <br />Nous présentons également une étude théorique des bruits thermiques et quantiques dans un nouveau type d'antenne gravitationnelle, constituée de deux sphères imbriquées.
|
5 |
Mesure optique ultrasensible et refroidissement par pression de radiation d´un micro-résonateur mécaniqueArcizet, Olivier 08 December 2006 (has links) (PDF)
On présente une expérience de mesure optique ultrasensible des vibrations mécaniques d'un micro-miroir inséré dans une cavité Fabry-Perot de grande finesse. Le micro-miroir est constitué d'un traitement optique présentant peu de pertes déposé à la surface d'un résonateur de taille sub-millimétrique en silicium. On a mesuré le bruit thermique du résonateur sur une large plage de fréquences et déterminé les caractéristiques de ses modes propres de vibration: fréquence, facteur de qualité, masse effective, structure spatiale. Ces modes ont des fréquences de résonance élevées (1 MHz) et des faibles masses effectives (100 µg). On a appliqué une force électrostatique sur le micro-résonateur, ce qui a permis de tester sa réponse mécanique et de le refroidir par contrôle actif en mettant en oeuvre un processus de friction froide.<br /><br />On a également mis en évidence un effet d'auto-refroidissement dû à la modification de la dynamique par la pression de radiation dans une cavité désaccordée. On a observé selon le désaccord un refroidissement et un chauffage du résonateur, qui conduit à forte puissance à une instabilité dynamique.<br /><br />Ces techniques de refroidissement combinées à de la cryogénie passive devraient permettre de refroidir suffisamment le micro-résonateur pour observer son état quantique fondamental.<br /><br />On présente enfin une étude expérimentale de l'effet photothermique et une mesure des dilatations induites par l'échauffement lié à l'absorption de lumière dans les traitements optiques.
|
6 |
Optomécanique en cavité cryogénique avec un micro-pilier pour l'observation du régime quantique d'un résonateur mécanique macroscopiqueKuhn, Aurélien 21 June 2013 (has links) (PDF)
Nous présentons la réalisation d'un montage expérimental visant à mesurer optiquement les fluctuations quantiques de position d'un résonateur mécanique macroscopique. Le résonateur est placé dans un environnement cryogénique et son mouvement est observé grâce à une cavité Fabry-Perot de grande finesse. Nous avons conçu et réalisé un résonateur optimisé pour l'observation de ses fluctuations quantiques de position. Il s'agit d'un micro-pilier en quartz vibrant selon un mode de compression et maintenu en son milieu par une fine membrane. Nous avons obtenu un mode fondamental de vibration oscillant à 4 MHz avec un facteur de qualité mécanique de près de deux millions. Nous avons conçu une cavité Fabry-Perot de grande finesse avec ce résonateur. Un miroir de haute réflectivité est déposé uniquement au sommet du pilier afin d'éviter de dégrader son facteur de qualité mécanique. Nous avons développé une technique d'ablation par laser pour réaliser des coupleurs d'entrée de la cavité ayant à la fois un très faible rayon de courbure et une grande réflectivité. Ceci nous a permis de construire une cavité de finesse 50 000 dont la taille du col optique, inférieure à 10 μm, est bien adaptée aux dimensions du résonateur. Nous avons fait développer un cryostat à dilution optimisé pour une mesure de position ultrasensible, dans lequel nous avons placé le dispositif optomécanique. L'ensemble du montage optique, constitué d'une source laser ultra-stable et d'un dispositif de détection des mouvements du résonateur, nous a permis d'observer les fluctuations thermiques de position du résonateur jusqu'à une température de l'ordre de 1 K.
|
Page generated in 0.1182 seconds