• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Further development of NICE-OHMS : – an ultra-sensitive frequency-modulated cavity-enhanced laser-based spectroscopic
 technique for detection of molecules in gas phase

Ehlers, Patrick January 2014 (has links)
Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy, NICE-OHMS, is a laser-based spectroscopic detection technique that comprises the concepts of frequency modulation (FM, for reduction of 1/f-noise by detecting the signal at a high frequency) and cavity enhancement (CE, for a prolongation of the optical path length) in a unique way. Properly designed, this gives the technique an intrinsic immunity against the frequency-to-noise conversion that limits many other types of CE techniques. All this gives it an exceptionally high sensitivity for detection of molecular species. Although originally developed for frequency standard purposes in the late 1990s, soon thereafter development of the technique towards molecular spectroscopy and trace gas detection was initiated. This thesis focuses on the further development of Doppler- broadened NICE-OHMS towards an ultra-sensitive detection technique. A number of concepts have been addressed. A few of these are: i) The detection sensitivity of fiber-laser-based NICE- OHMS has been improved to the 10−12 cm−1 range, which for detection of C2H2 corresponds to a few ppt (parts-per-trillion, 1:1012) in gas phase, by improving the locking of the laser to a cavity mode by use of an acousto-optic modulator. ii) It is shown that the system can be realized with a more compact footprint by implementation of a fiber-optic circulator. iii) A systematic and thorough investigation of the experimental conditions that provide maximum signals, referred to as the optimum conditions, e.g. modulation and demodulation conditions and cavity length, has been performed. As a part of this, an expression for the NICE-OHMS line shape beyond the conventional triplet formalism has been proposed and verified. iv) To widen the applicability of NICE-OHMS for detection of pressure broadened signals, also a setup based upon a distributed-feedback (DFB) laser has been realized. v) In this regime, the Voigt profile cannot model signals with the accuracy that is needed for a proper assessment of analyte concentrations. Therefore, the thesis demonstrates the first implementations of line profiles encompassing Dicke narrowing and speed-dependent effects to NICE-OHMS. While such profiles are well-known for absorption, there were no expressions available for their dispersion counterparts. Such expressions have been derived and validated by accompanying experiments. vi) The applicability of the technique for elemental detection, then referred to as NICE-AAS, has been prophesied. / Brusimmun kavitetsförstärkt optisk-heterodyndetekterad molekylärspektroskopi (NICE-OHMS) är en laser-baserad spektroskopisk teknik som förenar frekvensmodulation (för reducring av 1/f-brus genom detektion vid en hög frekvens) och kavitetsförstärkning (KF, för en förlängning av den optiska väglangden) på ett unikt sätt. Korrekt realiserad uppvisar tekniken en inneboende immunitet mot omvandling av frekvensbrus till intensitetsbrus som många andra KF-tekniker är begränsade av. Allt detta ger tekniken en exceptionellt hög känslighet för molekyldetektion. Ursprungligen utvecklad för frekvensstandardändamål i slutet av 1990, har den sedan dess utvecklats för molekylspektroskopi och spårgasdetektering. Denna avhandling fokuserar på vidareutvecklingen av NICE-OHMS mot en tillämpbar, ultrakänslig detektionsteknik. Ett antal koncept har adresserats. Några av dessa är: i) Detektionskänsligheten hos fiberlaserbaserad NICE-OHMS har förbättrats till 10-12 cm-1 området, vilket för detektion av C2H2 i gasfas motsvarar några få ppt (parts per biljon, 1:1012), genom att förbättra låsningen av lasern till en kavitetsmod med hjälp av en akustooptisk modulator. ii) Det har demonstrerats att NICE-OHMS kan realiseras mer kompakt med hjälp av en fiber-kopplad optisk cirkulator. iii) En systematisk och grundlig utredning av de experimentella förhållanden som ger maximala signaler, betecknade de optimala förhållanden, t.ex. modulering och demodulering och kavitetslängden, har utförts. Som ett led i detta har ett uttryck för NICE-OHMS linjeform bortom den konventionella triplett formalismen föreslagits och verifierats. iv) För att bredda tillämpbarheten av NICE-OHMS för detektering av tryckbreddade signaler har även en instrumentering baserad på en distribuerad-återkopplad (eng. distributed feedback, DFB) laser realiserats. v) I detta område kan inte Voigt profilen modellera signalen med den noggrannhet som krävs för en korrekt bedömning av analytkoncentrationer. Därför visar avhandlingen de första implementeringarna i NICE-OHMS av linjeprofiler som inkluderar Dicke avsmalning (eng. Dicke narrowing) och hastighetsberoende effekter (eng. speed-dependent effects). Emedan sådana profiler är välkända för absorption, fanns det inga uttryck för deras dispersiva motparter. Sådana uttryck har därför härletts och validerats av medföljande experiment. vi) Tillämpbarheten av tekniken för detektion av atomer, NICE-AAS, har diskuterats och förutspåtts. / <p>Ytterligare forskningsfinansiär: Kempestiftelserna</p>
2

Analysis of small volume liquid samples using cavity enhanced absorption spectroscopies

Rushworth, Cathy M. January 2012 (has links)
Cavity enhanced absorption spectroscopies have earned themselves a place as one of the methods of choice for sensitive absorption measurements on gas-phase samples, but their application to liquid samples has so far been more limited. Sensitive short pathlength analysis of liquid samples is required for online analysis of microfluidic samples, which are processed in channels with dimensions of tens to hundreds of micrometres. Microfluidics is important for a range of applications including drug discovery and environmental sensing. This thesis explores the application of cavity enhanced absorption spectroscopies to short pathlength (0.010 mm to 2 mm) analysis of sub-microlitre volumes of liquids. Three experimental set-ups have been been examined. Firstly, a single-wavelength cavity ringdown (CRD) spectrometer operating at 532 nm was assembled using two 99.8% reflectivity mirrors. High optical quality flow cells with short pathlengths ranging from 0.1 mm to 2 mm were inserted into this cavity at Brewster’s angle. The detection limit of the set-up with each inserted flow cell was established using a concentration series of aqueous potassium permanganate (KMnO₄) solutions. For the 1 mm flow cell, a detection limit of 29 nM KMnO₄ or 1.4 x 10⁻⁴ cm⁻¹ was established. Several different types of microfluidic devices were also inserted into the cavity, and it was found that the losses arising from the inserted chip were highly dependent on the method of chip manufacture. The CRD set-up with inserted 1 mm flow cell was applied to the detection of two important species, nitrite and iron(II), via analyte-specific colourimetric reactions. Detection limits of 1.9 nM nitrite and 3.8 nM iron(II) were established. The second experimental set-up utilised broadband, supercontinuum light generated in a 20 m length of nonlinear photonic crystal fibre. Broadband mirrors with around 99% reflectivity over the wavelength range from 400 to 800 nm were used to form the cavity, and a miniature spectrometer was used to wavelength-resolve the time-integrated cavity output. Flow cells and microfluidic chips were inserted into the cavity either at normal incidence or at Brewster’s angle. This set-up was employed for reaction analysis of an iron complexation reaction with bathophenanthroline, and for a model organic reaction, the Diels-Alder reaction between anthracene and 4-phenyl-1,2,4-triazoline-3,5-dione. The same broadband set-up was also used for pH measurements using bromocresol green indicator solution. Using dual-wavelength CRD spectroscopy, the pH sensitivity was established to be around a few milli pH units. Finally, an alternative type of cavity, formed from a loop of optical fibre has been investigated. A novel light-coupler was designed and fabricated in 365 μm core diameter multimode optical fibre. Sample designs employing both direct and evanescent wave absorption were investigated in small-core and large-core optical fibres, and the lowest detection limit of 0.11 cm⁻¹ was determined in direct absorption measurements, with a pathlength of 180 μm, using our novel light coupler in 365 μm core diameter optical fibre.
3

Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry

Foltynowicz, Aleksandra January 2009 (has links)
Noise-immune cavity-enhanced optical heterodyne molecular spectro-metry (NICE-OHMS) is one of the most sensitive laser-based absorption techniques. The high sensitivity of NICE-OHMS is obtained by a unique combination of cavity enhancement (for increased interaction length with a sample) with frequency modulation spectrometry (for reduction of noise). Moreover, sub-Doppler detection is possible due to the presence of high intensity counter-propagating waves inside an external resonator, which provides an excellent spectral selectivity. The high sensitivity and selectivity make NICE-OHMS particularly suitable for trace gas detection. Despite this, the technique has so far not been often used for practical applications due to its technical complexity, originating primarily from the requirement of an active stabilization of the laser frequency to a cavity mode. The main aim of the work presented in this thesis has been to develop a simpler and more robust NICE-OHMS instrumentation without compro-mising the high sensitivity and selectivity of the technique. A compact NICE-OHMS setup based on a fiber laser and a fiber-coupled electro-optic modulator has been constructed. The main advantage of the fiber laser is its narrow free-running linewidth, which significantly simplifies the frequency stabilization procedure. It has been demonstrated, using acetylene and carbon dioxide as pilot species, that the system is capable of detecting relative absorption down to 3 × 10-9 on a Doppler-broadened transition, and sub-Doppler optical phase shift down to 1.6 × 10-10, the latter corresponding to a detection limit of 1 × 10-12 atm of C2H2. Moreover, the potential of dual frequency modulation dispersion spectrometry (DFM-DS), an integral part of NICE-OHMS, for concentration measurements has been assessed. This thesis contributes also to the theoretical description of Doppler-broadened and sub-Doppler NICE-OHMS signals, as well as DFM-DS signals. It has been shown that the concentration of an analyte can be deduced from a Doppler-broadened NICE-OHMS signal detected at an arbitrary and unknown detection phase, provided that a fit of the theoretical lineshape to the experimental data is performed. The influence of optical saturation on Doppler-broadened NICE-OHMS signals has been described theoretically and demonstrated experimentally. In particular, it has been shown that the Doppler-broadened dispersion signal is unaffected by optical saturation in the Doppler limit. An expression for the sub-Doppler optical phase shift, valid for high degrees of saturation, has been derived and verified experimentally up to degrees of saturation of 100.
4

Stacked Dual Narrowband Organic Near-Infrared Photodetectors

Wang, Yazhong January 2017 (has links)
Compared with the detector devices made of inorganic semiconductors, organic photodetectors are granted with additional strengths, such as flexibility, high scalability and bio-compatibility. However, in the family of organic optoelectronic devices, the detectors that are capable of detecting photons at two or multiple specific wavelengths are still missing. Such photodetectors are highly interesting because they could identify the target objects or materials much more precisely by detecting the reflected, transmitted or emitted photons at two or multiple characteristic wavelengths. In this thesis project, the optical simulations using Transfer Matrix Method (TMM) were performed on the organic devices to achieve the dual wavelength narrowband detection in the near-infrared (NIR) spectral range of 700 ~ 1100 nm. The devices use the fact that, at the interface of the blended organic electron donating and accepting materials, the charge-transfer (CT) states with the transition energies that are lower than the optical gap of the neat materials are formed. Combined with a Fabry-Perot resonant cavity, the CT absorption can be dramatically enhanced at certain wavelengths. The simulation results show that the two detection wavelengths can be tuned independently from 650 to 1100 nm. The spectral resolution (full with at half maximum - FWHM) of the detection bands varies between 10 and 30 nm. The simulated external quantum efficiency (EQE) is ~35% at 700 nm and ~10% at 1000 nm, respectively. A possible application of such photodetectors is for example moisture detection, where two of the characteristic absorption peaks of water are located at around 750 and 960 nm. By optimizing the thickness of the two photo-absorbing layers in a tandem device structure, the detection bands can be tuned to match with those two wavelengths for simultaneous and precise detection.
5

Triply-Resonant Cavity-Enhanced Spontaneous Parametric Down-Conversion

Ahlrichs, Andreas 22 July 2019 (has links)
Die verlässliche Erzeugung einzelner Photonen mit wohldefinierten Eigenschaften in allen Freiheitsgraden ist entscheidend für die Entwicklung photonischer Quantentechnologien. Derzeit basieren die wichtigsten Einzelphotonenquellen auf dem Prozess der spontanen parameterischen Fluoreszenz (SPF), bei dem ein Pumpphoton in einem nichtlinearen Medium spontan in ein Paar aus Signal und Idlerphotonen zerfällt. Resonator-überhöhte SPF, also das Plazieren des nichtlinearen Mediums in einem optischen Resonator, ist ein weit verbreitetes Verfahren, um Einzelphotonenquellen mit erhöhter Helligkeit und angepassten spektralen Eigenschaften zu konstruieren. Das Anpassen der spektralen Eigenschaften durch gezielte Auswahl der Resonatoreigenschaften ist besonders für hybride Quantentechnologienvon Bedeutung, welche darauf abzielen, unterschiedliche Quntensysteme so zu kombinieren, dass sich deren Vorteile ergänzen. Diese Arbeit stellt eine umfassende theoretische und experimentelle Analyse der dreifach resonanten SPF vor. Das aus der Literatur bekannte theoretische Modell wird diesbezüglich verbessert, dass der Einfluss sämtlicher Eigenschaften des Resonators auf die wichtigen experimentellen Größen (z.B. die Erzeugungsrate) gezielt ausgewertet werden kann. Dieses verbesserte und hoch genaue Modell stellt eine wichtige Grundlage für die Entwicklung und Optimierung neuartiger Photonenpaarquellen dar. Im experimentellen Teil dieser Arbeit wird der Aufbau und die Charakterisierung einer dreifach resonanten Photonenpaarquellen präsentiert. Die neu entwickelte digitale Regelelektronik sowie ein hochstabiler, schmalbandiger Monochromator welcher auf monolitischen, polarisationsunabhängigen Fabry-Pérot Resonatoren basiert, werden vorgestellt. Indem diese temperaturstabilisierten Resonatoren als Spetrumanalysator verwendet werden, wird zum ersten Mal die Frequenzkammstruktur des Spektrums der erzeugten Signal- und Idlerphotonen nachgewiesen. Des Weiteren wird der Einfluss der Pumpresonanz auf die Korrelationsfunktion und die Zweiphotoneninterferenz von Signal- und Idlerphotonen simuliert und vermessen. Abschließend werden Experimente aus dem Bereich der hybriden Quantennetzwerke präsentiert, in welchen Quantenfrequenzkonversion verwendet wird um die erzeugten Signalphotonen in das Telekommunikationsband zu transferieren. Dabei wird nachgewiesen, dass das temporale Wellenpaket durch die Konversion nicht beeinflusst wird und aufgezeigt, wie Quantennetzwerke von kommerziellen Telekommunikationstechnologien profitieren können. / The consistent generation of single photons with well-defined properties in all degrees of freedom is crucial for the development of photonic quantum technologies. Today, the most prominent sources of single photons are based on the process of spontaneous parametric down-conversion (SPDC) where a pump photon spontaneously decays into a pair of signal and idler photons inside a nonlinear medium. Cavity-enhanced SPDC, i.e., placing the nonlinear medium inside an optical cavity, is widely used to build photon-pair sources with increased brightness and tailored spectral properties. This spectral tailoring by selective adjustment of the cavity parameters is of particular importance for hybrid quantum technologies which seek to combine dissimilar quantum systems in a way that their advantages complement each other. This thesis provides a comprehensive theoretical and experimental analysis of triply-resonant cavity-enhanced SPDC. We improve the theoretical model found in the literature such that the influence of all resonator properties on the important experimental parameters (e.g., the generation rate) can be analyzed in detail. This convenient and highly accurate model of cavity-enhanced SPDC represents an important basis for the design and optimization of novel photonpair sources. The experimental part of this thesis presents the setup and characterization of a triply-resonant photon-pair source. We describe the digital control system used to operate this source over days without manual intervention, and we present a highly stable, narrow-linewidth monochromator based on cascaded, polarization-independent monolithic Fabry-Pérot cavities. Utilizing these temperature-stabilized cavities as a spectrum analyzer, we verify, for the first time, the frequency comb spectral structure of photons generated by cavity-enhanced SPDC. We further simulate and measure the impact of the pump resonance on the temporal wave-packets and the two-photon interference of signal and idler photons. Finally, we present a series of experiments in the context of hybrid quantum networks where we employ quantum frequency conversion (QFC) to transfer the generated signal photons into the telecommunication band. We verify the preservation of the temporal wave-packet upon QFC and highlight how quantum networks can benefit from advanced commercial telecommunication technologies.

Page generated in 0.1025 seconds