Spelling suggestions: "subject:"cellcell adhesion"" "subject:"cell:cell adhesion""
1 |
The function and regulation of a target of homeotic gene control in DrosophilaMeadows, Lisa Ann January 1994 (has links)
No description available.
|
2 |
Genetic analysis of the human desmosomal cadherin locusCowley, Catherine Mary January 1997 (has links)
No description available.
|
3 |
Novel mechanisms of Stat3 activationArulanandam, Rozanne 23 February 2010 (has links)
Stat3 (signal transducer and activator of transcription-3) is activated by a number of receptor and non-receptor tyrosine kinases, while a constitutively active form of Stat3 alone is sufficient to induce neoplastic transformation. Results presented in this thesis reveal that Stat3 can also be activated through homophilic interactions by the epithelial (E)-cadherin and cadherin-11, two members of the classical type I and II cadherin family of surface receptors, responsible for the formation of cell to cell junctions. Indeed, by plating cells onto surfaces coated with fragments encompassing the two outermost domains of these cadherins, we definitively demonstrate that cadherin engagement can activate Stat3, even in the absence of direct cell to cell contact. At the same time, levels of the extracellular signal regulated kinase (Erk)1/2, which is often coordinately activated by growth factor receptors and oncogenes, remain unchanged upon cadherin ligation. Most importantly, we report, for the first time, an unexpected surge in total Rac1 and Cdc42 protein levels, triggered by cadherin engagement, and an increase in Rac1 and Cdc42 activity, which is responsible for the Stat3 stimulation observed. Inhibition of cadherin interactions reduced Rac/Cdc42 and Stat3 levels and induced apoptosis, pointing to a significant role of this pathway in cell survival signalling, a finding which could also have important therapeutic implications.
To better understand the role of Rac/Cdc42 in the cadherin-mediated Stat3 activation, we compared Stat3 activity in mouse HC11 cells before and after expression of the mutationally activated, RacV12. We demonstrate a dramatic increase in protein levels and activity of both the endogenous Rac and RacV12 with cell density, which was due to inhibition of proteasomal degradation. Moreover, we clearly show that RacV12 expression can activate Stat3 through an increase in expression of members of the IL6 family of cytokines, known potent Stat3 activators. In fact, knockdown experiments indicate that gp130 receptor function, and Stat3 activation, are essential for the migration and proliferation of RacV12-expressing cells, thereby demonstrating that the gp130/Stat3 axis represents an essential target of activated Rac in the regulation of both of these fundamental cellular functions. / Thesis (Ph.D, Pathology & Molecular Medicine) -- Queen's University, 2010-02-18 10:38:29.549
|
4 |
Contributions of cluster shape and intercellular adhesion to epithelial discohesion and emergent dynamics in collective migrationVargas Arango, Diego Alejandro 17 February 2016 (has links)
As a physical system, a cell interacts with its environment through physical and chemical processes. The cell can change these interactions through modification of its environment or its own composition. This dissertation presents the overarching hypothesis that both biochemical regulation of intercellular adhesion and physical interaction between cells are required to account for the emergence of cluster migration and collective dynamics observed in epithelial cells.
Collective migration is defined as the displacement of a group of cells with transient or permanent cell-cell contacts. One mode, cluster migration, plays an important role during embryonic development and in cancer metastasis. Despite its importance, collective migration is a slow process and hard to visualize, and therefore it has not been thoroughly studied in three dimensions (3D).
Based on known information about cluster migration from 2D studies of epithelial sheets and 3D single cell migration, this dissertation presents theoretical and experimental techniques to assess the independent contribution of physical and biochemical factors to 3D cluster migration. It first develops two computational models that explore the interaction between cells and the ECM and epithelial discohesion. These discrete mechanistic models reveal the need to account for intracellular regulation of adherens junctions in space and time within a cluster. Consequently, a differential algebraic model is developed that accounts for cross-reactivity of three pathways in a regulatory biochemical network: Wnt/β-catenin signaling, protein N-glycosylation, and E-cadherin adhesion. The model is tested by matching predictions to Wnt/β-catenin inhibition in MDCK cells. The model is then incorporated into a self-propelled particle (SPP) model, creating the first SPP model for study of adhesive mammalian cellular systems.
MDCK cell clusters with fluorescent nuclei are grown, seeded, and tracked in 3D collagen gels using confocal microscopy. They provide data on individual cell dynamics within clusters. Borrowed from the field of complex systems, normalized velocity is used to quantify the order of both in vitro and simulated clusters. An analysis of sensitivity of cluster dynamics on factors describing physical and biochemical processes provides new quantitative insights into mechanisms underlying collective cell migration and explains temporal and spatial heterogeneity of cluster behavior.
|
5 |
Evanescent wave and video microscopy methods for directly measuring interactions between surface-immobilized biomoleculesEverett, William Neil 15 May 2009 (has links)
Spatial and temporal tracking of passively diffusing functionalized colloids continues to be an improving and auspicious approach to measuring weak specific and non-specific biomolecular interactions. Evidence of this is given by the recent increase in published studies involving the development and implementation of these methods. The primary aim of the work presented in this dissertation was to modify and optimize video microscopy (VM) and total internal reflection microscopy (TIRM) methods to permit the collection of equilibrium binding and sampling data from interaction of surface-immobilized biomolecules. Supported lipid bilayers were utilized as model systems for functionalizing colloid and wall surfaces. Preliminary results measuring calcium-specific protein-protein interactions between surface immobilized cadherin fragments demonstrate the potential utility of this experimental system and these methods. Additionally, quantum dot-modified colloids were synthesized and evanescent wave-excited luminescence from these particles was used to construct potential energy profiles. Results from this work demonstrate that colloids can be used as ultra-sensitive probes of equilibrium interactions between biomolecules, and specialized probes, such as those modified with quantum dots, could be used in a spectral multiplexing mode to simultaneously monitor multiple interactions.
|
6 |
Evanescent wave and video microscopy methods for directly measuring interactions between surface-immobilized biomoleculesEverett, William Neil 15 May 2009 (has links)
Spatial and temporal tracking of passively diffusing functionalized colloids continues to be an improving and auspicious approach to measuring weak specific and non-specific biomolecular interactions. Evidence of this is given by the recent increase in published studies involving the development and implementation of these methods. The primary aim of the work presented in this dissertation was to modify and optimize video microscopy (VM) and total internal reflection microscopy (TIRM) methods to permit the collection of equilibrium binding and sampling data from interaction of surface-immobilized biomolecules. Supported lipid bilayers were utilized as model systems for functionalizing colloid and wall surfaces. Preliminary results measuring calcium-specific protein-protein interactions between surface immobilized cadherin fragments demonstrate the potential utility of this experimental system and these methods. Additionally, quantum dot-modified colloids were synthesized and evanescent wave-excited luminescence from these particles was used to construct potential energy profiles. Results from this work demonstrate that colloids can be used as ultra-sensitive probes of equilibrium interactions between biomolecules, and specialized probes, such as those modified with quantum dots, could be used in a spectral multiplexing mode to simultaneously monitor multiple interactions.
|
7 |
The Role of c-Src in E-Cadherin ActivityRobert Mclachlan Unknown Date (has links)
Cadherin-based cell-cell contacts are prominent sites for phosphotyrosine signalling, being enriched in tyrosine-phosphorylated proteins, tyrosine kinases and phosphatases. The functional interplay between cadherin adhesion and tyrosine kinase signalling, however, is complex and incompletely understood. In my thesis I have tested the hypothesis that c-Src contributes positively to cadherin biology by functioning as part of an adhesion activated cell-signalling pathway. I found that c-Src is active at both established and reforming cell-cell contacts, and c-Src can be activated by homophilic ligation of the adhesion receptor. However, c-Src has a biphasic impact on cadherin function, exerting a positive supportive role at lower signal strengths, but inhibiting function at high signal strengths. Inhibiting c-Src under circumstances when it is activated by cadherin adhesion decreased several measures of cadherin function. This suggests that the cadherin-activated c-Src signalling pathway serves positively to support cadherin function, while quantitative changes in signal strength may result in qualitative differences in functional outcome. Finally, my data implicated PI3-kinase signalling and cortactin as potential targets for cadherin-activated c-Src signalling. By inhibiting protein tyrosine phosphatases with pervanadate, I found that tyrosine phosphatase activity and not just protein binding was required to stimulate Src activity in response to cadherin ligation. I identified the tyrosine phosphatase RPTPα as a possible regulator of cadherin-activated Src signalling. RPTPα localises to cell-cell adhesions and it is found in a complex with E-cadherin and c-Src. Furthermore, knockdown of RPTPα disrupted the integrity of cadherin-based contacts and the activity of Src at these cell-cell contacts. This suggests that in response to cadherin-homophilic ligation PTP activity is required to stimulate Src signalling. Finally, I identified a novel pathway by which aberrant growth factor signalling could be downregulating cadherin function and promoting the invasion of epithelial cells. Stimulating cells with high levels of EGF revealed that aberrant epidermal growth factor signalling could disrupt cadherin-activated cell signalling. The integrity of cadherin-based contacts and the activity of Src at the cell-cell contacts were both disrupted in the presence of high levels of EGF. Analysis of E-cadherin and RPTPα immunoprecipitates suggested that activation of cadherin-bound EGFR might disrupt Src activation by displacing E-cadherin-RPTPα binding. Finally, analysing the subcellular distribution of these proteins revealed that, in response to high levels of EGF, E-cadherin, β-catenin, EGFR and pEGFR are internalised together in phospho-cortactin-rich endosomal-like structures. Therefore I propose that E-cadherin adhesion activates a cell-signalling pathway involving c-Src that functions to dynamically regulate the actin cytoskeleton and to maintain the adhesive strength of cell-cell adhesions. Perturbation of cadherin-activated Src signalling downregulates cadherin function and promotes the disassembly of cell-cell adhesive contacts. The concept of a cadherin-activated Src signalling pathway provides a new way to think about cadherin biology. Instead of merely functioning as passive glue holding two cells together, E-cadherin functions as an adhesion-activated signalling receptor. Dysregulation of E-cadherin-activated Src signalling and downregulation of cell-cell adhesions could be a mechanism promoting the invasion and metastasis of epithelial tumours.
|
8 |
Zyxin Regulates Epithelial-Mesenchymal Transition by Mediating Actin-Membrane Linkages at Cell-Cell JunctionsSperry, Liv Rebecca 04 August 2009 (has links) (PDF)
Development is punctuated by morphogenetic rearrangements of epithelial tissues, including complete detachment of individual motile cells during epithelial-mesenchymal transition (EMT). Dramatic actin rearrangements occur as cell-cell junctions are dismantled and cells become independently motile during EMT. Characterizing dynamic actin rearrangements and identifying actin machinery driving these rearrangements is essential for understanding basic mechanisms of cell-cell junction remodeling; yet, neither the precise series of actin rearrangements at cell-cell junctions that accompany EMT, nor the machinery that controls actin rearrangement during EMT, have been identified. This work represents a detailed study of junctional actin reorganization in cells undergoing EMT, identifies actin regulatory proteins that control this actin reorganization, and defines the specific function of one regulatory protein, zyxin, in EMT. Using immunofluorescence and live cell imaging of HGF induced scattering of MDCK cells, dynamic actin rearrangement events occurring during EMT are characterized. Junctional actin characteristic of cell-cell adherent cells is rearranged into contractile medial actin networks linked to the junctional membrane in the initial steps of cell scattering. This actin rearrangement is accompanied by dynamic redistribution of specific actin regulatory proteins, namely α-actinin and zyxin-VASP complexes. α-Actinin mediates higher order structure of junctional actin. Zyxin-VASP complexes mediate linkage of dynamic medial actin networks to adherens junction membranes. Zyxin regulation of actin-membrane linkage controls whether cell migration during EMT occurs independently in solitary cells or is coordinated through tissues. The functional analysis employed here uses novel, quantitative methods that define specific cellular EMT ‘phenotypes’ to reveal the precise role of zyxin in EMT. Constitutive active zyxin mutants exhibit persistent actin-membrane linkages and a scattering phenotype in which cells migrate without loss of cell-cell adhesion. Zyxin is proposed to regulate EMT progression by regulating disruption or maintenance of actin membrane linkages at cell-cell junctions. Zyxin alters the ability of cells to fully detach and migrate independently during EMT and may be an important regulator of morphogenetic plasticity.
|
9 |
The transmembrane protein fibrocystin/polyductin regulates cell mechanics and cell motilityPuder, Stefanie, Fischer, Tony, Mierke, Claudia Tanja 26 April 2023 (has links)
Polycystic kidney disease is a disorder that leads to fluid filled cysts that replace normal renal tubes.
During the process of cellular development and in the progression of the diseases, fibrocystin
can lead to impaired organ formation and even cause organ defects. Besides cellular polarity,
mechanical properties play major roles in providing the optimal apical-basal or anterior–posterior
symmetry within epithelial cells. A breakdown of the cell symmetry that is usually associated with
mechanical property changes and it is known to be essential in many biological processes such as
cell migration, polarity and pattern formation especially during development and diseases such
as the autosomal recessive cystic kidney disease. Since the breakdown of the cell symmetry can be
evoked by several proteins including fibrocystin, we hypothesized that cell mechanics are altered by
fibrocystin. However, the effect of fibrocystin on cell migration and cellular mechanical properties
is still unclear. In order to explore the function of fibrocystin on cell migration and mechanics,
we analyzed fibrocystin knockdown epithelial cells in comparison to fibrocystin control cells. We
found that invasiveness of fibrocystin knockdown cells into dense 3D matrices was increased and
more efficient compared to control cells. Using optical cell stretching and atomic force microscopy,
fibrocystin knockdown cells were more deformable and exhibited weaker cell–matrix as well as
cell–cell adhesion forces, respectively. In summary, these findings show that fibrocystin knockdown
cells displayed increased 3D matrix invasion through providing increased cellular deformability,
decreased cell–matrix and reduced cell–cell adhesion forces
|
10 |
Quantitative analysis of coordinated epithelial rotation on a two-dimensional discoidal pattern / 二次元円盤状パターンを用いた上皮細胞集団の回転運動についての定量解析LUO, Shuangyu 23 May 2023 (has links)
京都大学 / 新制・課程博士 / 博士(生命科学) / 甲第24822号 / 生博第502号 / 新制||生||67(附属図書館) / 京都大学大学院生命科学研究科統合生命科学専攻 / (主査)教授 上村 匡, 教授 見学 美根子, 教授 鈴木 淳 / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DGAM
|
Page generated in 0.0732 seconds