• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 22
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 99
  • 99
  • 58
  • 49
  • 24
  • 16
  • 16
  • 14
  • 13
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Designing Chemical Strategies to Promote Therapeutic Access to Restricted Sites In Cyto

Jennifer L Rowe (8052164) 28 November 2019 (has links)
Therapeutically restricted sites present a formidable barrier in medicine. Herein, chemical strategies to overcome two restricted sites, HIV reservoirs and intracellular bacteria, will be discussed. First, cellular and anatomical HIV reservoirs, such as those in the brain, limit HIV eradication using currently known therapeutic regimes. HIV therapies are unable to localize in the brain, in part, due to high expression of efflux transporters, such as P-glycoprotein (P-gp), at the BBB, because many of these therapies are P-gp substrates. In an effort to overcome therapeutically restricted HIV sanctuaries, a dimerized combination HIV therapy was designed to act two-fold. First, the dimeracts as a P-gp inhibitor allowing therapeutic access to restricted sites. Second, the dimeractsas a prodrug, which once in the reducing environment of the cell, may release monomeric HIV therapies. The dual conjugate, Abacavir-S2-Darunavir, was shown to potently inhibit P-gp across two separate cell lines, was able to regenerate the component monomers in a reducing environment and contained modest anti-HIV activity.<div><br><div>Further, mammalian cells create sanctuary sites for bacteria to grow and proliferate, because many common antibiotic therapies are unable to cross the mammalian cell membrane. Therefore, these pathogens are able to proliferate without therapeutic constraint. Here, a chemical strategy was developed to deliver a dual antibiotic therapy inside mammalian cells in an effort to clear these intracellular pathogens. First, a new synthetic strategy was developed for facile synthesis of dual conjugates, composedof an aminoglycoside and a cell penetrating peptide (CPP) linked with a reversible disulfide tether, using kanamycin and the known CPP Arg8as a model system. Next, this synthetic methodology was expanded for use with theaminoglycoside tobramycin and theknown broad-spectrum antibiotic and cell penetrating peptide, P14LRR, once again linked via the reversible disulfide tether (TobP14). Two distinct isomers of TobP14 were synthesized, isolated, and fully characterized by 2D NMR. The TobP14 isomers were shown to be an effective antibiotic across various Gram positive and negative pathogens such as MRSA, S. epidermidis, P. aeruginosa, and A. baumannii. Further, the isomers effectively releasedthe monomeric therapies (tobramycin and P14-SH) in a reducing environment and werenontoxic to mammalian cells up to 16 μM. Finally, the dual conjugate isomers significantly reduce two different strains of intracellular A. baumanniiwithin macrophages.<br><div><br></div><div><br></div></div></div>
42

Vers la vectorisation des bisphophonates par les peptides de pénétration cellulaire / Toward bisphosphonate vectorization with cell-penetrating peptides

Guedeney, Nicolas 13 December 2018 (has links)
De nos jours, une des stratégies majeures dans la modulation de la pharmacocinétique des composés bioactifs est leur vectorisation et l’obtention de formes prodrogues. Ce travail est centré sur la vectorisation d’antitumoraux phosphorés à l’aide de peptides favorisant le passage membranaire. Nous avons alors réalisé la conjugaison d’aminoalkyl-bisphosphonates avec des séquences peptidiques afin de modifier leur temps de rétention dans l’organisme et d’augmenter leur internalisation cellulaire. Différents espaceurs possédant un motif carbonylé insaturé ont été évalués dans le couplage par la réaction d’addition aza- et thiaMichael afin d’aboutir à l’obtention d’un conjugué peptide-alendronate. Une approche prodrogue a également été réalisée avec la synthèse de dérivés de type bisphosphinates et l’obtention d’un analogue de l’alendronate. / Nowadays, one of the main strategies for pharmacokinetic modifications of bioactive compounds is their vectorization and the synthesis of prodrug derivatives. This work is focused on the vectorization of phosphorus antitumor agents with cell-penetrating peptides. We have then conjugated aminoalkyl-bisphosphonates with peptidic sequence to modify their retention time and increase their cellular internalization. Several linkers bearing an insaturated carbonyl moiety have been evaluated in conjugation by aza- and thia-Michael addition reaction to obtain a conjugated peptide-alendronate compounds. A prodrug approach has been conducted with the synthesis of bisphosphinate derivatives and an analog of alendronate has been obtained.
43

Synthesis of a Cationic Amphiphilic Polyproline Helix (CAPH) Conjugate with Polymyxin B

Ambar M Rosario (11014752) 23 July 2021 (has links)
Pathogens such as <i>Listeria</i>, <i>Shigella</i>, <i>Brucella</i>, <i>Salmonella</i>, <i>Mycobacterium tuberculosis</i> and <i>methicillin-resistant Staphylococcus aureus</i> (MRSA) can traverse into mammalian cells, such as phagocytic macrophages. Once inside, these bacteria can survive and reproduce, causing chronic infections. It is of utmost importance to develop novel antibiotics with broad spectrum activity to control these deadly bacteria. Broad spectrum activity will allow for targeting of pathogens with different structures and cell membrane components.<div>This work focuses on the synthesis of a dual antibiotic agent, composed of a cationic amphiphilic polyproline helix (CAPH) possessing cell penetrating and nonmembrane lytic antimicrobial capabilities (P14LRR), and a derivative of the polymyxin B (PMX) antibacterial peptide. This dual antibiotic conjugate was created to be a tool to potentially clear intracellular pathogenic bacteria. Overall, the reduction of the disulfide bond linking the two antibiotics within the reducing environment of cells would release the individual antimicrobial agents, and could have improved cell membrane penetration and intracellular synergistic activity. Herein, the synthesis of the dual antibiotic agent, P14LRR-PMX, is discussed. </div>
44

Oligonucleotide Complexes with Cell-Penetrating Peptides : Structure, Binding, Translocation and Flux in Lipid Membranes

Ferreira Vasconcelos, Luis Daniel January 2014 (has links)
The ability of cell-penetrating peptides to cross plasma membranes has been explored for various applications, including the delivery of bioactive molecules to inhibit disease-causing cellular processes. The uptake mechanisms by which cell-penetrating peptides enter cells depend on the conditions, such as the cell line the concentration and the temperature. To be used as therapeutics, each novel cell-penetrating peptide needs to be fully characterized, including their physicochemical properties, their biological activity and their uptake mechanism. Our group has developed a series of highly performing, non-toxic cell-penetrating peptides, all derived from the original sequence of transportan 10. These analogs are called PepFects and NickFects and they are now a diverse family of N-terminally stearylated peptides. These peptides are known to form noncovalent, nano-sized complexes with diverse oligonucleotide cargoes. One bottleneck that limits the use of this technology for gene therapy applications is the efficient release of the internalized complexes from endosomal vesicles. The general purpose of this thesis is to reveal the mechanisms by which our in house designed peptides enter cells and allow the successful transport of biofunctional oligonucleotide cargo. To reach this goal, we used both biophysical and cell biology methods. We used spectroscopy methods, including fluorescence, circular dichroism and dynamic light scattering to reveal the physicochemical properties. Using confocal and transmission electron microscopy we observed and tracked the internalization and intracellular trafficking. Additionally we tested the biological activity in vitro and the cellular toxicity of the delivery systems. We conclude that the transport vectors involved in this study are efficient at perturbing lipid membranes, which correlates with their remarkable capacity to transport oligonucleotides into cells. The improved and distinct capacities to escape from endosomal vesicles can be the result of their different structures and hydrophobicity. These findings extend the knowledge of the variables that condition intracellular Cell-penetrating peptide mediated transport of nucleic acids, which ultimately translates into a small step towards successful non-viral gene therapy.
45

Discovery and Optimization of Cell-Penetrating Peptidyl Therapeutics through Computational and Medicinal Chemistry

Dougherty, Patrick G. 27 August 2019 (has links)
No description available.
46

Development of Peptidomimetic Inhibitors Against Intracellular Targets

Appiah Kubi, George 05 October 2020 (has links)
No description available.
47

Effects of arginine derivatives and oligopeptides on the physical properties of model membranes

Verbeek, Sarah Félice 10 March 2020 (has links)
No description available.
48

Machine learning and mapping algorithms applied to proteomics problems

Sanders, William Shane 30 April 2011 (has links)
Proteins provide evidence that a given gene is expressed, and machine learning algorithms can be applied to various proteomics problems in order to gain information about the underlying biology. This dissertation applies machine learning algorithms to proteomics data in order to predict whether or not a given peptide is observable by mass spectrometry, whether a given peptide can serve as a cell penetrating peptide, and then utilizes the peptides observed through mass spectrometry to aid in the structural annotation of the chicken genome. Peptides observed by mass spectrometry are used to identify proteins, and being able to accurately predict which peptides will be seen can allow researchers to analyze to what extent a given protein is observable. Cell penetrating peptides can possibly be utilized to allow targeted small molecule delivery across cellular membranes and possibly serve a role as drug delivery peptides. Peptides and proteins identified through mass spectrometry can help refine computational gene models and improve structural genome annotations.
49

Mechanisms of Cellular Entry of Cell Penetrating Peptides and Proteins

Sahni, Ashweta 12 September 2022 (has links)
No description available.
50

Cell-penetrating peptides, novel synthetic nucleic acids, and regulation of gene function : Reconnaissance for designing functional conjugates

Guterstam, Peter January 2008 (has links)
Our genome operates by sending instructions, conveyed by mRNA, for the manufacture of proteins from chromosomal DNA in the nucleus of the cell to the protein synthesizing machinery in the cytoplasm. Alternative splicing is a natural process in which a single gene can encode multiple related proteins. During RNA splicing, introns are selectively removed resulting in alternatively spliced gene products. Alternatively spliced protein products can have very different biological effects, such that one protein isoform is disease-related while another isoform is desirable. Splice switching opens the door to new drug targets, and antisense oligonucleotides (asONs), designed to switch splicing, are effective drug candidates. Cellular uptake of oligonucleotides(ONs) is poor, therefore utilization of cell-penetrating peptides (CPPs), well recognized for intracellular cargo delivery, is a promising approach to overcome this essential issue. Most CPPs are internalized by endocytosis, although the mechanisms involved remain controversial. Here, evaluation of CPP-mediated ON delivery over cellular membranes has been performed. A protocol that allows for convenient assessment of CPP-mediated cellular uptake and characterization of corresponding internalization routes is established. The protocol is based on both fluorometric uptake measurements and a functional splice-switching assay, which in itself is based on biological activity of conveyed ONs. Additionally, splice switching ONs (SSOs) have been optimized for high efficiency and specificity. Data suggest that SSO activity is improved for chimeric phosphorothioate SSOs containing locked nucleic acid (LNA) monomers. It is striking that the LNA monomers in such chimeric constructs give rise to low mismatch discrimination of target pre-mRNA, which highlight the necessity to optimize sequences to minimize risk for off-target effects. The results are important for up-coming work aimed at developing compounds consisting of peptides and novel synthetic nucleic acids, making these entities winning allies in the competition to develop therapeutics regulating protein expression patterns.

Page generated in 0.0887 seconds