• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamique et mécanismes de ciblage de la méthylation de l’ADN au cours du développement précoce chez la souris / Dynamics and mechanisms of targeting of DNA methylation during early mouse development

Borgel, Julie 16 June 2011 (has links)
La méthylation de l'ADN est fortement reprogrammée pendant le développement chez les mammifères, où elle semble jouer un rôle essentiel dans la répression génique et le maintien de l'identité cellulaire. Néanmoins, les cibles de la méthylation de l'ADN, la cinétique d'acquisition et les mécanismes de ciblage au cours du développement sont mal connus. Le premier objectif de ma thèse a donc été d'identifier les cibles de la méthylation de l'ADN pendant l'embryogenèse chez la souris. Sachant que plusieurs études dans les cellules ES ont mis en évidence un lien entre l'histone méthyltransférase G9a et l'établissement de la méthylation de l'ADN, le deuxième objectif de ma thèse a été de tester le rôle de G9a dans l'établissement de la méthylation de l'ADN au cours de l'embryogenèse. Pour cela, j'ai développé une technique d'analyse de la méthylation à l'échelle génomique à partir d'un petit nombre de cellules. Nous avons observé que la méthylation est essentiellement catalysée par DNMT3B et est mise en place principalement pendant l'implantation de l'embryon entre le blastoscyste et l'épiblaste. Pendant cette période, la méthylation cible préférentiellement les gènes de la lignée germinale et est indispensable à leur répression. La méthylation cible aussi des gènes spécifiques de différentes lignées somatiques telles que la lignée hématopoïétique, et peut être effacée ultérieurement pendant la différentiation. De manière surprenante, nous avons identifié des promoteurs de gènes non soumis à l'empreinte qui semblent résister à la reprogrammation de la méthylation de l'ADN et hériter la méthylation des gamètes parentaux. Enfin, nous avons montré que, contrairement à ce que suggèrent les études dans les cellules ES, G9a ne semble pas être indispensable à l'acquisition et au maintien de la méthylation de l'ADN au niveau des promoteurs pendant le développement in vivo. / DNA methylation is an epigenetic mark extensively reprogrammed during mammalian development. It is believed to play essential functions in gene regulation and the maintenance of cellular identity. However, the target genes of DNA methylation and the mechanisms that recruit DNA methylation during development remain poorly understood. The first aim of my PhD project was to identify the target genes of DNA methylation during early mouse development in vivo. In addition, because several studies show that G9a is required for DNA methylation establishment and maintenance during ES cells differentiation, the second aim was to determine whether G9a is required for the establishment of promoter DNA methylation patterns during early development in vivo.To address these questions, I developped a genomics approach to map DNA methylation starting from very small amount of cells. .We observed a major epigenetic switch during implantation at the transition from the blastocyst to the postimplantation epiblast. During this period, DNA methylation is primarily targeted to repress the germline expression program. DNA methylation in the epiblast is also targeted to promoters of lineage-specific genes such as hematopoietic genes, which are subsequently demethylated during terminal differentiation. De novo methylation during early embryogenesis is catalyzed by Dnmt3b, and absence of DNA methylation leads to ectopic gene activation in the embryo. Surprisingly, we identify nonimprinted genes that escape post-fertilization DNA methylation reprogramming and seem to inherit promoter DNA methylation from parental gametes. Finally we show that, unlike what it was shown in ES cells, the absence of G9a in an in vivo context does not have a drastic effect on the maintenance and the establishment of promoter DNA methylation during early development.
2

Analyse des mécanismes assurant la robustesse d’un événement de transdifférenciation : rôle de l’ubiquitine ligase E3 SEL-10 / Analysis of robustness in a transdifferentiation event : role of ubiquitin ligase E3 SEL-10

Delance, Cécile 17 January 2018 (has links)
Les cellules différenciées peuvent changer de destin cellulaire de manière induite ou naturelle. Afin de comprendre et connaître les acteurs et mécanismes contrôlant les processus de reprogrammation, notre laboratoire étudie le changement d'identité (ou transdifférenciation, Td) naturel d’une cellule épithéliale rectale (nommée Y) en motoneurone (nommé PDA) chez Caenorhabditis elegans. Les travaux préliminaires ont montré qu’il existe une synergie entre les modifications d’histone (jmjd-3.1 et wdr-5.1) et l’ubiquitination (sel-10). SEL-10 est une ubiquitine ligase E3 possédant un domaine Fbox et une répétition de domaines WD40. Dans cette étude, nous avons pu mettre en évidence : i) une implication du domaine Fbox, des indications sur la localisation intracellulaire de SEL-10 et un rôle inattendu du protéasome au sein de la Td. ii) un rôle de SEL-10 dans la robustesse de la Td (résistance aux stress environnementaux). iii) sel-10, jmjd-3.1 et wdr-5.1 agissent sur la transcription de gènes impliqués dans la transdifférenciation (testé par smFISH). Ainsi qu’une caractérisation du motif d’expression marqueur de Td cog-1 au cours de la redifférenciation. / Differentiated cells can change their cellular fate induced or naturally. In order to understand the mechanisms controlling reprogramming processes, our laboratory is studying the natural change in identity (or transdifferentiation, Td) of a rectal epithelial cell (named Y) and motor neuron (named PDA) in Caenorhabditis elegans.Preliminary work has shown that there is a synergy between histone modifications (jmjd-3.1 and wdr-5.1) and ubiquitination (sel-10). SEL-10 is an E3 ubiquitin ligase with a Fbox domain and WD40 repeat domain.In this study, we highlight: i) the Fbox domain involvement in the Td, indications about the intracellular localization of SEL-10 and an unexpected role of the proteasome within TD. ii) a role of SEL-10 in the robustness of the Td. iii) sel-10, jmjd-3.1 and wdr-5.1 act on gene transcription in transdifferentiation. This one was tested by smFISH and allowed the characterization of the cog-1 transdifferentiation marker expression pattern during redifferentiation.
3

Transcriptional profiling of Drosophila larval ventral nervous system hemilineages

Etheredge, Jack January 2017 (has links)
Over 90% of neurons in the adult CNS of Drosophila are born from neuronal stem cells (neuroblasts) during the post-embryonic phase of neurogenesis. Most of the post-embryonic neurons derive from type I neuroblasts, which undergo repeated asymmetric divisions to produce a series of ganglion mother cells (GMCs). Each GMC then divides once resulting in two neurons, the “A” (Notch-on) and “B” (Notch-off) daughters. The respective daughter neurons of each type then constitute the A and B hemilineages for that neuroblast. 33 postembryonic hemilineages contribute neurons to each thoracic hemisegment, and these immature neurons arrest their development at a similar stage until metamorphosis. These arrested neuroblast lineages are uniquely identifiable by morphology. Access to a large pool of clonally-related and morphologically similar neurons makes this system tractable to RNA-seq analysis, since one can genetically label and isolate many cells per animal, which are predicted to share similar gene expression profiles. Our primary focus is to examine hemilineages with similar targets (e.g. leg neuropil) to identify genes that are required to establish and maintain hemilineage identity early in development. Given that activating these hemilineage neurons as a group drives distinct behaviors and that they form morphologically coherent structural units during development, we hypothesized that these hemilineages should express patterns of genes that are: 1) distinct from other hemilineages and 2) characteristic of individual hemilineages. We have used hemilineage-specific GAL4 lines to isolate hemilineages for RNA-seq analysis, ultimately gathering data for 11 of the 33 hemilineages as well as for some larger populations of neurons. We found that, in addition to combinatorial patterns of genes specifying the hemilineage neurons, there are some genes that are expressed by only a single hemilineage within the ventral nervous system (VNS). Most hemilineages display unique expression of certain transcription factors (TFs) and axon guidance genes. We collected data for two pairs of sibling hemilineages (lineage 1 and lineage 12) in order to identify differences between the A and B hemilineages derived from a common neuroblast. While A neurons display greater overall transcriptional diversity than B neurons, sibling hemilineages share very similar expression profiles. Comparing the gene expression between immature and mature larval neurons revealed that mature neurons express many genes not expressed in immature neurons, such as neuropeptide signaling genes and many neurotransmitter and ion channel genes associated with mature neuron function. Birth order also appears to dictate many differences in expression profile. Late-born immature neurons are typified by a period of transient Notch-related gene expression that is absent from early-born neurons. We are characterizing the function of many differentially expressed genes in particular hemilineages.
4

Role of CAF-1 in the establishment and maintenance of cellular identity during development in Drosophila / Rôle de CAF-1 dans l'établissement et le maintien de l'identité cellulaire au cours du développement chez la Drosophile

Clemot, Marie 19 September 2016 (has links)
L’organisation de l’ADN sous forme de chromatine joue un rôle crucial dans la régulation de l’identité cellulaire. De par son rôle clé dans l’assemblage de la chromatine couplé à la synthèse d’ADN, le chaperon d’histone CAF-1 apparaît comme un acteur potentiel dans la transmission de l’information portée par la chromatine au cours des générations cellulaires. Bien que CAF-1 soit essentiel pour la survie au stade larvaire chez la Drosophile, les outils génétiques disponibles chez cet organisme permettent d’analyser sa fonction dans des types cellulaires ciblés. Mon travail montre que la grande sous-unité de CAF-1 (P180) est essentielle pour le maintien de la lignée germinale femelle. L’arrêt précoce de l’ovogénèse induit par la perte de P180 dans les cellules germinales a pu être attribué à l’activation de checkpoints, vraisemblablement en réponse à une accumulation d’ADN simple-brin liée à des défauts de réplication. De façon remarquable, les cellules souches germinales (GSCs) traversent une « crise identitaire » en absence de P180 : elles présentent des caractéristiques de cellules en cours de différenciation, dont une abscission incomplète, tout en conservant des propriétés spécifiques aux GSCs. En revanche, mon analyse n’a pas révélé de défaut d’identité des neuroblastes, une autre population de cellules souches, qui continuent de se diviser de façon asymétrique sans P180. De même, les cellules des disques imaginaux se divisant de façon symétrique prolifèrent en absence de P180, bien que plus lentement. Des analyses complémentaires permettront de déterminer si des mécanismes alternatifs d’assemblage de la chromatine compensent la perte de CAF-1 dans ces cellules. / The organization of DNA into chromatin is dynamic and plays important roles in the establishment and the maintenance of cellular identity. By virtue of its central role in replication-coupled chromatin assembly, the histone chaperone CAF-1 constitutes an interesting candidate in a search for molecular players involved in the inheritance of chromatin states in mitotic cells. In Drosophila, dCAF-1 is essential for viability at the larval stage. Yet, the genetic tools available in the fruit fly allow to analyze the function of dCAF-1 in specific tissues. Mainly, my thesis work shows that the large subunit of dCAF-1 (P180) is essential for oogenesis. I have shown that the early arrest of oogenesis observed upon depletion of P180 in germ cells results from the activation of checkpoints pathways and cell death, possibly in response to the accumulation of single-strand DNA as a consequence of replication defects. Strikingly, P180 plays an essential role in the female germline stem cells (GSCs), which upon depletion of P180 enter an “identity crisis” and harbor features of differentiating cyst cells, including incomplete abscission, while maintaining at the same time some GSCs features. In contrast, the loss of P180 does not seem to alter the identity of larval neuroblasts, another population of stem cells, which continue to divide in an asymmetric fashion in its absence. Finally, the cells of the imaginal discs, which divide symmetrically, are able to proliferate upon loss of P180, albeit at a slower rate. Further analyses are required to determine whether alternative chromatin assembly pathways compensate for the loss of dCAF-1 activity in these cells.
5

Rôles du locus bric à brac durant la formation des niches de cellules souches germinales dans l'ovaire chez Drosophila melanogaster / Roles of bric à brac locus in germline stem cell niche formation in the Drosophila melanogaster ovary

Miscopein Saler, Laurine 21 December 2018 (has links)
L’environnement des cellules souches (CS) est appelé la niche. Les interactions entre la niche et les CS doivent être hautement régulées puisqu’un dérèglement de ces interactions peut entrainer la formation de tumeurs ou une stérilité. La découverte récente de niches pré-métastatiques rend l’étude de ces interactions cruciale pour mieux comprendre les processus tumoraux. L’ovaire de drosophile un excellent modèle pour étudier les voies de signalisation contrôlant le maintien des CS par leur niche. C’est dans ce modèle qu’il a été montré pour la première fois que le maintien des CS germinales (CSG) dépend d’un facteur secrété par les niches, Decapentaplegic (Dpp), homologue des protéines BMP (superfamille des TGF-β) chez les mammifères. La régulation fine de cette voie est cruciale pour empêcher une prolifération excessive de CSG (tumeur) ou bien leur perte (stérilité). La formation de ces niches et le recrutement des CSG a lieu durant le développement larvaire. Le locus bric-à-brac (bab) est le premier décrit comme étant nécessaire pour ce processus. Durant ma thèse, j’ai montré que Bab est nécessaire et suffisant pour réguler l’expression de dpp et par conséquent le recrutement des CSG ; et certains de mes résultats suggèrent également que le recrutement des CSG au sein de leur niche est régulé par un mécanisme différent de celui impliqué dans leur maintien (Miscopein-Saler et al,. en préparation). / The interactions between stem cells (SC) and their microenvironment called a niche are known to be crucial for SC behaviour. These interactions need to be highly regulated since abnormal SC behaviour is a leading cause of developmental diseases and tumourigenesis. The discovery of pre-metastatic niches makes the study of niche-to-SC interactions a crucial step for our understanding of cancer biology. The powerful genetic tools available render the Drosophila ovary an excellent model to study the signalling controlling germline SC (GSC) maintenance by a niche in an adult tissue. Using this model, it was shown for the first time that SC maintenance was dependent on a factor emanating from the niche. This factor is Decapentaplegic (Dpp), a Drosophila homolog of BMP proteins (family of TGF-β signalling molecules) and a tight regulation of this signalling pathway is very important to avoid an excess of GSC-like cells (tumour) or a loss of GSCs (sterility). Formation of the GSC niches occurs during the larval stages and the bric-à-brac (bab) locus was first discovered as being necessary for niche morphogenesis. During my doctoral studies, I have shown that Bab1 and Bab2 are necessary and sufficient for GSC recruitment by regulating dpp expression, and some of my results alos suggest that GSC recruitment might occurs according to a different mechanism that the one involved in their maintenance (Miscopein-Saler et al,. in preparation).
6

Understanding Epigenetic Controllers of Stem Cell Fate and Function

Factor, Daniel C. 02 February 2018 (has links)
No description available.

Page generated in 0.0875 seconds