• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 7
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of truss-like cellular structures using density information from topology optimization

Alzahrani, Mahmoud Ali 27 August 2014 (has links)
The advances in additive manufacturing removed most of the limitations that were once stopping designers when it comes to the manufacturability of the design. It allowed designers to produce parts with high geometric complexity such as cellular structures. These structures are known for their high strength relative to their low mass, good energy absorption, and high thermal and acoustic insulation compared to their relative solid counter-parts. Lattice structures, a type of cellular structures, have received considerable attention due to their properties when producing light-weight with high strength parts. The design of these structures can pose a challenge to designers due to the sheer number of variables that are present. Traditional optimization approaches become an infeasible approach for designing them, which motivated researchers to search for other alternative approaches. In this research, a new method is proposed by utilizing the material density information obtained from the topology optimization of continuum structures. The efficacy of the developed method will be compared to existing methods, such as the Size Matching and Scaling (SMS) method that combines solid-body analysis and a predefined unit-cell library. The proposed method shows good potential in structures that are subjected to multiple loading conditions compared to SMS, which would be advantageous in creating reliable structures. In order to demonstrate the applicability of the proposed method to practical engineering applications, the design problem of a commercial elevator sling will be considered.
2

Metallurgical and Mechanical Properties of Additively Manufactured Cellular Structures

Raghavendra, Sunil 26 March 2021 (has links)
Naturally occurring cellular materials are always optimized in terms of morphology, structural resistance, and functionality. The use of cellular materials is based on the application as well as the loading condition. Cellular materials are composed of an interconnected network of struts, plates, or repeating unit cells, forming edges or faces. The properties of these structures can be tailored according to the requirements by changing one or more of the parameters mentioned above. This makes cellular materials suitable for various applications ranging from aerospace to biomedical. In biomedical applications, these cellular materials can be used to manufacture porous implants to match the properties of the surrounding bone. They can also be used as coatings on solid implants to promote bone tissue ingrowth for better implant fixation. The production of these complex, porous implants using traditional manufacturing methods is a difficult task. However, the development of additive manufacturing processes such as Laser Powder Bed Fusion (LPBF) has made it possible to manufacture complex and intricate shaped cellular materials with minimum material wastage and considerable accuracy. Therefore, with the combination of the LPBF process and cellular materials design, it is possible to produce a wide range of cell topologies with customized mechanical properties depending on the implant location, material, and the needs of the patient. Titanium and its alloys such as Ti6Al4V have been used in biomedical applications due to their high strength to weight ratio, corrosion resistance, and good biocompatibility. Also, the LPBF process has been used to produce various Ti6Al4V components for various applications including cellular materials. The development of cellular materials for implants is dependent on the relative density, response of the unit cell to loading conditions, and the optimal pore size for bone ingrowth. Studies have been carried out to understand the behavior of the cellular materials under compressive loads since most of the implants experience compression loads during their operation. Nevertheless, the implants also undergo fatigue loading due to day-to-day activities and tensile loads when the implant is loose or when the host performs an extensive physical activity. Therefore, designing and studying the cellular materials for these loads is necessary to completely understand their behavior. Considering the pore size, studies have suggested that a pore size of ~ 800 μm is suitable to induce bone ingrowth after implantation. The cellular materials can be broadly classified into stretching and bending dominated. Stretching dominated cellular materials are characterized by high strength and stiffness while bending dominated structures are high compliant. This behavior of cellular materials is dependent solely on the unit cell topology. Therefore, the development of different types of cell topologies and their characterization is required to produce optimized fully porous implants. Also, the effect of the LPBF process on the designed parameters of the unit cell alters the obtained mechanical properties from the desired values. The present work aims at developing different Ti6Al4V cellular materials that can be potentially used for application in implants. A combination of different cellular materials can be used to develop completely porous implants or single cellular materials can be used as coatings for solid implants to induce osseointegration. A major portion of the work is focused on the mechanical properties of LPBF manufactured cellular materials characterized using static and fatigue tests. The study also investigates the discrepancy between the as-designed and as-built geometrical parameters of these cellular structures. Finite elements analysis and the Gibson-Ashby modeling has been employed to understand the difference between the as-designed and as-built properties. Another part of the study was focused on the effect of designed geometrical parameters on the as-built geometry of cellular materials. The aim was to develop a relationship between the as-designed and the as-built parameters. This thesis covers all the aspects mentioned in the above paragraph in detail. The research work has been provided in three different chapters (Chapter 2, 3, and 4) which are well connected to each other. Each chapter is composed of an abstract, introduction, materials and methodology, results and discussion, and conclusion. A conclusion on the complete research and the future scope is provided at the end. The first chapter introduces all the aspects concerned with the development of cellular materials for biomedical applications. Literature review on all aspects have been provided, ranging from the properties of the bone, cellular materials, manufacturing process for cellular materials, and the properties of bulk materials suitable for biomedical applications. In chapter 2, Ti6Al4V cellular materials with three different cell topologies namely cubic regular, cubic irregular, and trabecular have been investigated. The irregular specimens are obtained by skewing the junctions of the cubic regular configuration. Trabecular specimens are designed by randomly joining 4-6 struts at a node to mimic human trabecular bone. The three cell topologies were manufactured at three different porosity levels by changing their strut thickness and pore size. The cubic regular cells are considered due to their stable and simple configuration, while irregular and trabecular based specimens have shown promising results in the osseointegration according to the partner company. However, the mechanical properties of irregular and trabecular specimens play an important role in implant design. Therefore, all the specimens were subjected to compression test and as well as a novel tensile test under two different types of loading conditions, monotonic and cyclic to obtain their strength and stiffness. However, a misalignment in the struts with the loading direction in compression led to an asymmetric behavior between tensile and compression. Higher strength and stiffness values were observed under tensile loading, the results of which were in conjunction with the theoretical prediction from the Gibson-Ashby model. The experimental results indicated the irregularity tends to reduce the strength, stiffness and induce bending dominate behavior. Morphological analysis was carried out to obtain the discrepancy between the as-designed and the as-built thickness values. This led to the FE analysis of as-designed models to obtain the difference in the properties of as-designed and as-built cellular materials. Furthermore, as-built FE models were generated using morphological data to study the effect of strut defects and compare them with the experimental results. The next step involved comparing the experimental results with the FE analysis carried out tomography-based FE models. The last part of the study involved obtaining a relation between the as-designed and as-built Young’s modulus for cubic regular, cubic irregular, and trabecular specimens to create a reference database. The mechanical properties from the compression and tensile test of the highest porosity specimens were closer to the properties of human bone. The tensile tests were successful in predicting the mechanical properties accurately. These observations were the motivation to further study the effect of irregularity on various cell topologies, by subjecting them to static and fatigue loads. In chapter 3, seven different types of unit cells, three regular configurations, three irregular configurations, and one trabecular based unit cell. The unit cells used in the study consisted of regular and irregular configurations of the cubic-based, star-based, and cross-based specimens. These specimens were selected to have a comparison of properties from stretching dominate cubic specimen to bending dominated cross-shaped specimens and to study the effect of irregularity. Therefore, the specimens were subjected to and mechanical characterization using compression, tension, and compression – compression fatigue tests along with porosity and morphological analysis. The tensile specimens in this chapter were designed with a thicker transition at the ends, while compression specimens had uniform configuration throughout the specimen. FE analysis was carried on the as-designed configuration of these specimens to study the effect of transition and to compare the as-designed and tensile experimental results to understand the effect of decreased porosity on the failure mechanisms. Fatigue tests were carried under compression-compression load and failure mechanisms in different unit cells were captured. The results of the study indicated that the irregularity has a greater effect on the strength and stiffness of stretching-dominated cellular material and has a negligible effect on bending-dominated cross-based specimens. The trabecular specimens display excellent mechanical properties under static load with good strength, stiffness and sustain high strain values. The normalized S-N curves indicate a clear demarcation between the bending and stretching-dominated cellular materials. The FE analysis showed a similar failure location as compared to the experimental results despite the decrease in the porosity due to manufacturing. The morphological analysis showed the effect of strut orientation of the as-built thickness. The morphological analysis and the difference between the as-designed and as-built geometrical parameters show that an in-depth study on the geometrical deviation due to the LPBF process is necessary. The next chapter focuses on the geometrical deviation in LPBF manufactured cellular specimens and the parameters influencing this deviation. In chapter 4, cubic regular cellular materials with filleted junctions are studied for geometrical deviation and to obtain a relationship between the as-designed and as-built geometric parameters. Initially, nine different specimens with different strut thickness, fillet radius, and unit cell size were manufactured at three different orientations with respect to the printing plane. The main aim of this study was to devise a compensation strategy to reduce the geometrical deviation due to the LPBF process. A linear relation between the as-designed and as-built geometrical values is obtained, which is used for compensation modeling. Struts perpendicular to the building plane were uniform in cross-sections while horizontal and inclined struts had an elliptical cross-section. The internal porosity analysis has been carried out which indicates that the porosity at the junctions is lesser than the porosity at the junctions. The compensation strategy worked well for the second set of specimens produced using the same parameters, thereby reducing the geometrical deviation between the as-designed and the as-built parameters. Finally, the effect of filleted junctions, building directions, and compensation modeling on fatigue properties have been studied. Specimens with load-bearing struts printed parallel to the building plane had the lowest mechanical properties, while the specimens with struts inclined to the loading direction and building plane displayed excellent static and fatigue properties. The fillets at the junctions improve the fatigue resistance of the specimen by reducing the stress concentration. The printing direction and the presence of fillets influence the fatigue failure locations as well. Therefore, filleted junctions that can be reproduced well by the LPBF process can be used to reduce the stress concentration in cellular materials.
3

Effective Mechanical Behavior of Honeycombs: Theoretical and Experimental Studies

Balawi, Shadi Omar 02 July 2007 (has links)
No description available.
4

Design synthesis for morphing 3D meso-scale structure

Chu, Chen 21 May 2009 (has links)
Rapid prototyping (RP) can be used to make complex shapes with very little or even no constraint on the form of the parts. New design methods are needed for parts that can take advantage of the unique capabilities of RP. Although current synthesis methods can successfully solve simple design problems, practical applications with thousands to millions elements are prohibitive to generate solution for. Two factors are considered. One is the number of design variables; the other is the optimization method. To reduce the number of design variables, parametric approach is introduced. Control diameters are used to control all strut size across the entire structure by utilizing a concept similar to control vertices and Bezier surface. This operation allows the number of design variables to change from the number of elements to a small set of coefficients. In lattice structure design, global optimization methods are popular and widely used. These methods use heuristic strategies to search the design space and thus perform, as oppose to traditional mathematical programming (MP) methods, a better global search. This work propose that although traditional MP methods find local optimum near starting point, given a quick convergence rate, it will be more efficient to perform such method multiple times to integrate global search than using a global optimization method. Particle Swarm Optimization and Levenburg-Marquardt are chosen to perform the experiments.
5

Designing New Generations of BCC Lattice Structures and Developing Scaling Laws to Predict Compressive Mechanical Characteristics and Geometrical Parameters

Abdulhadi, Hasanain January 2020 (has links)
No description available.
6

Design and Manufacturing Guidelines for Additive Manufacturing of High Porosity Cellular Structures

Kabbur, Nikhil 07 November 2017 (has links)
No description available.
7

Process parameter optimization of M300 maraging steel and mechanical characterization of uniformly and selectively scaled M300 cellular structures

Petersen, Haley Elizabeth 10 May 2024 (has links) (PDF)
Laser powder bed fusion is a type of metal-based additive manufacturing method that can be customized for a given material through modification of process parameters, resulting in changes to the overall quality and mechanical properties of the as-built component. Optimal mechanical properties are typically achieved by performing experimental builds of fully dense components with multiple parameter sets and comparing the resulting mechanical properties. Additionally, AM allows geometric freedom that can be utilized to produce structures tailored for energy absorption, such as cellular structures or lattice structures. There is limited previous work of scaling effects on mechanical properties of cellular structures. The first part of this work aims to determine process parameters that result in the best overall mechanical properties of L-PBF manufactured maraging 300 steel. This work then uses the optimal parameters to produce cellular structures scaled both uniformly and selectively to perform mechanical and physical analysis on their response.
8

The adoption of laser melting technology for the manufacture of functionally graded cobalt chrome alloy femoral stems

Hazlehurst, Kevin Brian January 2014 (has links)
Total Hip Arthroplasty (THA) is an orthopaedic procedure that is performed to reduce pain and restore the functionality of hip joints that are affected by degenerative diseases. The outcomes of THA are generally good. However, the stress shielding of the periprosthetic femur is a factor that can contribute towards the premature loosening of the femoral stem. In order to improve the stress shielding characteristics of metallic femoral stems, stiffness configurations that offer more flexibility should be considered. This research has investigated the potential of more flexible and lightweight cobalt chromium molybdenum (CoCrMo) femoral stems that can be manufactured using Selective Laser Melting (SLM). Square pore cellular structures with compressive properties that are similar to human bone have been presented and incorporated into femoral stems by utilising fully porous and functionally graded designs. A three dimensional finite element model has been developed to investigate and compare the load transfer to the periprosthetic femur when implanted with femoral stems offering different stiffness configurations. It was shown that the load transfer was improved when the properties of the square pore cellular structures were incorporated into the femoral stem designs. Factors affecting the manufacturability and production of laser melted femoral stems have been investigated. A femoral stem design has been proposed for cemented or cementless fixation. Physical testing has shown that a functionally graded stem can be repeatedly manufactured using SLM, which was 48% lighter and 60% more flexible than a traditional CoCrMo prosthesis. The research presented in this thesis has provided an early indication of utilising SLM to manufacture lightweight CoCrMo femoral stems with levels of flexibility that have the potential to reduce stress shielding in the periprosthetic femur.
9

Synthèse de matériaux alvéolaires base carbures par transformation d'architectures carbonées ou céramiques par RCVD/CVD : application aux récepteurs solaires volumiques / Synthesis of porous materials (carbide type) with carbon or ceramic substrates transformation by RCVD/CVD : applications for solar receivers

Baux, Anthony 25 October 2018 (has links)
L’objectif était de concevoir et réaliser des architectures alvéolaires performantes pour les récepteurs solaires volumétriques des futures centrales thermodynamiques. Trois stratégies différentes sont envisagées pour l’ébauche des préformes carbones ou céramiques : (i) la synthèse de matériaux biomorphiques issus de la découpe de balsa, (ii) l’élaboration de structures céramiques par projection de liant et (iii) la réplication de structures polymères réalisées par impression 3D, à l’aide d’une résine précurseur de carbone ou céramique. Dans tous les cas, les préformes crues sont converties par pyrolyse en C ou SiC et une étape d’infiltration/revêtement de SiC par CVD (Chemical Vapor Deposition) achève la fabrication des structures céramiques. Une étape intermédiaire de RCVD (Reactive CVD) a été mise en œuvre au cours de la première voie, afin de convertir la structure carbonée microporeuse en TiC. La composition, la microstructure et l’architecture poreuse des structures céramiques ont tout d’abord été caractérisées. Les caractéristiques des matériaux les plus pertinentes, compte tenu de l’application en tant qu’absorbeur solaire, ont ensuite été examinées. Les propriétés thermomécaniques et la résistance à l’oxydation ont ainsi été caractérisées en priorité. La perméabilité et les propriétés thermo-radiatives, qui sont également deux facteurs importants pour l’application, ont également été considérées. / The aim is to design and create efficient cellular architectures for volumetric solar receivers used in the future thermodynamic power plants. Three strategies are considered for the creation of ceramic or carbon preforms: (i) the synthesis of biomorphic materials resulting from the cutting of balsa, (ii) the elaboration of ceramic structures by binder jetting and (iii) the replication of polymer structures made by 3D printing, using a carbon or ceramic precursor resin. In all cases, the green preforms are converted by pyrolysis to C or SiC and an infiltration step / SiC coating by CVD (Chemical Vapor Deposition) completes the manufacture of ceramic structures. An intermediate stage of RCVD (Reactive CVD) was implemented during the first strategy, in order to convert the microporous carbonaceous structure into TiC. The composition, the microstructure and the porous architecture of the ceramic structures were first characterized. The characteristics of the most relevant materials, considering the application as a solar receiver, were then examined. The thermomechanical properties and the oxidation resistance have thus been characterized in priority. Permeability and thermo-radiative properties, which are also two important factors for application, were also considered.
10

The development of lightweight cellular structures for metal additive manufacturing

Hussein, Ahmed Yussuf January 2013 (has links)
Metal Additive Manufacturing (AM) technologies in particular powder bed fusion processes such as Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS) are capable of producing a fully-dense metal components directly from computer-aided design (CAD) model without the need of tooling. This unique capability offered by metal AM has allowed the manufacture of inter-connected lattice structures from metallic materials for different applications including, medical implants and aerospace lightweight components. Despite the many promising design freedoms, metal AM still faces some major technical and design barriers in building complex structures with overhang geometries. Any overhang geometry which exceeds the minimum allowable build angle must be supported. The function of support structure is to prevent the newly melted layer from curling due to thermal stresses by anchoring it in place. External support structures are usually removed from the part after the build; however, internal support structures are difficult or impossible to remove. These limitations are in contrast to what is perceived by designers as metal AM being able to generate all conceivable geometries. Because support structures consume expensive raw materials, use a considerable amount of laser consolidation energy, there is considerable interest in design optimisation of support structure to minimize the build time, energy, and material consumption. Similarly there is growing demand of developing more advanced and lightweight cellular structures which are self-supporting and manufacturable in wider range of cell sizes and volume fractions using metal AM. The main focuses of this research is to tackle the process limitation in metal AM and promote design freedom through advanced self-supporting and low-density Triply Periodic Minimal Surface (TPMS) cellular structures. Low density uniform, and graded, cellular structures have been developed for metal AM processes. This work presents comprehensive experimental test conducted in SLM and DMLS processes using different TPMS cell topologies and materials. This research has contributed to new knowledge in understanding the manufacturability and mechanical behaviour of TPMS cellular structures with varying cell sizes, orientations and volume fractions. The new support structure method will address the saving of material (via low volume cellular structures and easy removal of powder) and saving of energy (via reduced build-time).

Page generated in 0.1511 seconds