• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cellulose liquefaction under mild conditions

Sabade, Sanjiv B. (Sanjiv Balwant) January 1983 (has links)
No description available.
12

Implante dérmico acelular sintético no subcutâneo e na superfície da pele de cobaias

Natsuaki, Kryscia Leiko [UNESP] 16 July 2015 (has links) (PDF)
Made available in DSpace on 2016-08-12T18:48:46Z (GMT). No. of bitstreams: 0 Previous issue date: 2015-07-16. Added 1 bitstream(s) on 2016-08-12T18:50:59Z : No. of bitstreams: 1 000865259.pdf: 3255498 bytes, checksum: 5ab3f0da34d9a2202c8baaada085b6cc (MD5) / A Nanoskin® é uma película de celulose bacteriana produzida pela bactéria Acetobacter xylinum,por meio de um processo biotecnológico. É composta por uma rede de nanofibrilas cuja estrutura cria uma extensa superfície, a qual permite a retenção de grande quantidade de água e importantes modificações em seu formato, sem perder suas características estruturais. Objetivo: visando acrescentar novas possibilidades para a reconstrução da pálpebra, em seus folhetos profundo ou superficial, o presente estudo foi desenvolvido com o objetivo de avaliar se a película de Nanoskin® poderia ser uma opção. Método: foram utilizadas 40 cobaias, do sexo masculino, que receberam fragmentos de Nanoskin® na região dorsal, em dois estudos, um direcionado para a utilização da Nanoskin nos tecidos profundos, quando o biomaterial foi colocado no subcutâneo e outro no qual a Nanoskin foi colocada na superfície da pele. Em ambos os estudos foram utilizados dois tipos de Nanoskin: grupo 1 (G1), no qual foi utilizada película de Nanoskin® (2X2 cm) sem recobrimento de gelatina no subcutâneo ou na superfície da pele e o grupo 2 (G2), que recebeu implante de Nanoskin® (2X2 cm) com revestimento de gelatina no subcutâneo e na superfície da pele. O grupo controle foi obtido com colocação de enxerto de pele de espessura total no tamanho de 2X2 cm, contíguo ao implante de Nanoskin®, em todos os animais de G1 e de G2 do experimento que estudou o biomaterial na superfície da pele. Cinco animais de cada grupo foram eutanasiados em quatro momentos experimentais: 7 dias (M1), 30 dias (M2), 90 dias (M3) e 180 dias (M4). Foram realizadas avaliações morfométricas do implante das lâminas histológicas, exame histológico e exame ultraestrutural. Resultados: a Nanoskin® quando implantada no subcutâneo não foi encontrada em um animal de M3 e em cinco animais de M4. Nos momentos M3, M4 e M5, houve separação entre as suas lamelas. Houve... / The Nanoskin® is a bacterial cellulose film produced by the bacteria Acetobacter xylinum by means of a biotechnological process. It is composed by a network of nanofibrils whose structure creates a large surface area, which allows the retention of a large amount of water and significant changes in its shape without losing its structural characteristics. Purpose: aiming to add new possibilities for the reconstruction of the eyelid, in its superficial or deep lamellae, this study was developed in order to assess whether the Nanoskin® film could be an option. Method: 40 male guinea pig were used, that received Nanoskin® fragments in the dorsal region, in two studies, one directed to the use of Nanoskin® in deep tissue when the biomaterial was placed subcutaneously and another in which the Nanoskin® was placed on skin surface. In both studies we used two types of Nanoskin: group 1 (G1), which was used Nanoskin® film (2x2 cm) without gelatin coating on the subcutaneous or on the skin surface, and Group 2 (G2), which received Nanoskin® implant (2X2 cm) with gelatin coating on the subcutaneous and on the skin surface. The control group was obtained with full-thickness skin graft placement on the size of 2X2 cm Nanoskin® adjacent to the implant in all animals in G1 and G2 experiment that studied the biomaterial on the surface of the skin. Five animals from each group were euthanized at four experimental times: 7 days (M1), 30 days (M2), 90 days (M3) and 180 days (M4). Morphometric assessments of the implant and the histological slides were held, histological and ultrastructural examination. Results: the Nanoskin® when implanted subcutaneously was not found in one animal from M3 and in five animals from M4. In moments M3, M4 and M5, there was separation between their lamellae . There was a significant inflammation at the beginning of the experiment which reduced the following times, and formation of a pseudocapsule around the ...
13

Cellulose liquefaction under mild conditions

Sabade, Sanjiv B. (Sanjiv Balwant) January 1983 (has links)
No description available.
14

The development of a soft and disposable cellulosic product by partial oxidation of cotton with oxides of nitrogen

Johnson, Stuart January 1947 (has links)
M.S.
15

In Vitro Determination of the Cellulose-Decomposing Rates of Twelve Denton County, Texas Soils

Heather, Carl D. 08 1900 (has links)
In this study twelve types of top soil were collected under aseptic conditions. The cellulose-decomposing rates of these were compared in order to determine the relative rates in the cellulose-decomposing potential of the microorganisms involved. Furthermore, this investigation is designed to acquire pertinent information on the rate at which natural cellulose materials are returned to available plant food.
16

Expression and characterization of an intracellular cellobiose phosphorylase in Saccharomyces cerevisiae

Sadie, Christa J. (Christiena Johanna) 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: Cellulose, a glucose polymer, is considered the most abundant fermentable polymer on earth. Agricultural waste is rich in cellulose and exploiting these renewable sources as a substrate for ethanol production can assist in producing enough bioethanol as a cost-effective replacement for currently used decreasing fossil fuels. Saccharomyces cerevisiae is an excellent fermentative organism of hexoses; however the inability of the yeast to utilize cellulose as a carbon source is a major obstruction to overcome for its use in the production of bio-ethanol. Cellobiose, the major-end product of cellulose hydrolysis, is hydrolyzed by -glucosidase or cellobiose phosphorylase, the latter having a possible metabolic advantage over -glucosidase. Recently, it has been showed that S. cerevisiae is able to transport cellobiose. The construction of a cellulolytic yeast that can transport cellobiose has the advantage that end-product inhibition of the extracellular cellulases by glucose and cellobiose is relieved. Furthermore, the extracellular glucose concentration remains low and the possibility of contamination is decreased. In this study the cellobiose phosphorylase gene, cepA, of Clostridium stercorarium was cloned and expressed under transcriptional control of the constitutive PGK1 promoter and terminator of S. cerevisiae on a multicopy episomal plasmid. The enzyme was expressed intracellulary and thus required the transport of cellobiose into the cell. The fur1 gene was disrupted for growth of the recombinant strain on complex media without the loss of the plasmid. The recombinant strain, S. cerevisiae[yCEPA], was able to sustain aerobic growth on cellobiose as sole carbon source at 30°C with Vmax = 0.07 h-1 and yielded 0.05 g biomass per gram cellobiose consumed. The recombinant enzyme had activity optima of 60°C and pH 6-7. Using Michaelis-Menten kinetics, the Km values for the colorimetric substrate p-nitrophenyl-b-D-glucopyranoside (pNPG) and cellobiose was estimated to be 1.69 and 92.85 mM respectively. Enzyme activity assays revealed that the recombinant protein was localized in the membrane fraction and no activity was present in the intracellular fraction. Due to an unfavourable codon bias in S. cerevisiae, CepA activity was very low. Permeabilized S. cerevisiae[yCEPA] cells had much higher CepA activity than whole cells indicating that the transport of cellobiose was inadequate even after one year of selection. Low activity and insufficient cellobiose transport led to an inadequate glucose supply for the yeast resulting in low biomass formation. Cellobiose utilization increased when combined with other sugars (glucose, galactose, raffinose, maltose), as compared to using cellobiose alone. This is possibly due to more ATP being available for the cell for cellobiose transport. However, no cellobiose was utilized when grown with fructose indicating catabolite repression by this sugar. To our knowledge this is the first report of a heterologously expressed cellobiose phosphorylase in yeast that conferred growth on cellobiose. Furthermore, this report also reaffirms previous data that cellobiose can be utilized intracellularly in S. cerevisiae. / AFRIKAANSE OPSOMMING: Sellulose, ‘n homopolimeer van glukose eenhede, word beskou as die volopste suiker polimeer op aarde. Landbou afval produkte het ‘n hoë sellulose inhoud en benutting van diè substraat vir bio-etanol produksie kan dien as ‘n koste-effektiewe aanvulling en/of vervanging van dalende fossielbrandstof wat tans gebruik word. Die gis, Saccharomyces cerevisiae, is ‘n uitmuntende organisme vir die fermentasie van heksose suikers, maar die onvermoë van die gis om sellulose as koolstofbron te benut is ‘n groot struikelblok in sy gebruik vir die produksie van bio-etanol. Sellobiose, die hoof eindproduk van ensiematiese hidrolise van sellulose, word afgebreek deur -glukosidase of sellobiose fosforilase. Laasgenoemde het ‘n moontlike metaboliese voordeel bo die gebruik van -glukosidase vir sellobiose hidrolise. Daar was onlangs gevind dat S. cerevisiae in staat is om sellobiose op te neem. Die konstruksie van ‘n sellulolitiese gis wat sellobiose intrasellulêr kan benut, het die voordeel dat eindproduk inhibisie van die ekstrasellulêre sellulases deur sellobiose en glukose verlig word. Verder, wanneer die omsetting van glukose vanaf sellobiose intrasellulêr plaasvind, word die ekstrasellulêre glukose konsentrasie laag gehou en die moontlikheid van kontaminasie beperk. In hierdie studie was die sellobiose fosforilase geen, cepA, van Clostridium stercorarium gekloneer en uitgedruk onder transkripsionele beheer van die konstitutiewe PGK1 promoter en termineerder van S. cerevisiae op ‘n multikopie episomale plasmied. Die ensiem is as ‘n intrasellulêre proteïen uitgedruk en het dus die opneem van die sellobiose molekuul benodig. Die disrupsie van die fur1 geen het toegelaat dat die rekombinante ras op komplekse media kon groei sonder die verlies van die plasmied. Die rekombinante ras, S. cerevisiae[yCEPA], het aërobiese groei by 30°C op sellobiose as enigste koolstofbron onderhou met mmax = 0.07 h-1 en ‘n opbrengs van 0.05 gram selle droë gewig per gram sellobiose. Die rekombinante ensiem het optima van 60°C en pH 6-7 gehad. Die K m waardes vir die kolorimetriese substraat pNPG en sellobiose was 1.69 en 92.85 mM onderskeidelik. Ondersoek van die ensiem aktiwiteit het getoon dat die rekombinante proteïen gelokaliseer was in die membraan fraksie en geen aktiwiteit was teenwoordig in die intrasellulêre fraksie nie. CepA aktiwiteit was laag as gevolg van ‘n lae kodon voorkeur in S. cerevisiae. Verder het geperforeerde S. cerevisiae[yCEPA] selle aansienlik beter CepA aktiwiteit getoon as intakte selle. Hierdie aanduiding van onvoldoende transport van sellobiose na binne in die sel tesame met die lae aktiwiteit van die CepA ensiem het gelei tot onvoldoende glukose voorraad vir die sel en min biomassa vorming. Sellobiose verbruik het toegeneem wanneer dit tesame met ander suikers (glukose, galaktose, raffinose, maltose) gemeng was, heelwaarskynlik deur die vorming van ekstra ATP’s vir die sel wat ‘n toename in sellobiose transport teweeg gebring het. Fruktose het egter kataboliet onderdrukking veroorsaak en sellobiose was nie benut nie. Sover ons kennis strek, is hierdie die eerste verslag van ‘n heteroloë sellobiose fosforilase wat in S. cerevisiae uitgedruk is en groei op sellobiose toegelaat het. Verder, bewys die studie weereens dat S. cerevisiae wel sellobiose kan opneem.
17

Cloning of a novel Bacillus pumilus cellobiose-utilising system : functional expression in Escherichia coli

Van Rooyen, Ronel, 1976- 12 1900 (has links)
Thesis (MScAgric)--University of Stellenbosch, 2002. / ENGLISH ABSTRACT: Cellulose, a ~-1,4-linked polymer of glucose, is the most abundant renewable carbon source on earth. It is well established that efficient degradation of cellulose requires the synergistic action of three categories of enzymes: endoglucanases (EG), cellobiohydrolases (CBH) and ~-glucosidases. ~-Glucosidases are a heterogenous group of enzymes that display broad substrate specificity with respect to hydrolysis of cellobiose and different aryl- and alkyl-ê-u-glucosides. They not only catalyse the final step in the saccharification of cellulose, but also stimulate the extent of cellulose hydrolysis by relieving the cellobiose mediated inhibition of EG and CBH. The ability to utilize cellobiose is widespread among gram-negative, gram-positive, and Archaea bacterial genera. Cellobiose phosphoenolpyruvate- dependent phosphotransferase systems (PTS) have been reported in various bacteria, including: Bacillus species. In this study, we have used a cellobiose chromophore analog, p-nitrophenyl- ~-D-glucopyranoside (pNPG), to screen a Bacillus pumilus genomic library for cellobiose utilization genes that are functionally expressed in Escherichia coli. Cloning and sequencing of the most active clone with subsequent sequence analysis allowed the identification of four adjacent open reading frames. An operon of four genes (celBACH), encoding a cellobiose phosphotransferase system (PTS): enzyme II (encoded by celB, celA and celC) and a ó-phospho-f-glucosidase (encoded by celH) was derived from the sequence data. The amino acid sequence of the celH gene displayed good homology with ~-glucosidases from Bacillus halodurans (74.2%), B. subtilis (72.7%) and Listeria monocytogenes (62.2%). .As implied by sequence alignments, the celH gene product belongs to family 1 of the glycosyl hydrolases, which employ a retaining mechanism of enzymatic bond hydrolysis. In vivo PTS activity assays concluded that the optimal temperature and pH at which the recombinant E. coli strain hydrolysed pNPG were pH 7.5 and 45°C, respectively. Unfortunately, at 45°C the CelBACH-associated activity of the recombinant strain was only stable for 20 minutes. It was also shown that the enzyme complex is very sensitive to glucose. Since active growing cells metabolise glucose very rapidly this feature is not a significant problem. Constitutive expression of the B. pumilus celBACH genes in E. coli enabled the host to efficiently metabolise cellobiose as a carbon source. However, cellobiose utilization was only achievable in the presence ofO.01% glucose. This phenomenon could be explained by the critical role of phosphoenolpyruvate (PEP) as the phosphate donor in PTS-mediated transport. Glucose supplementation induced the glycolytic pathway and subsequently the availability of PEP. Furthermore, it could be concluded that the general PTS components . (enzyme I and HPr) of E. coli must have complemented the CelBACH system from B. pumilus to allow functionality of the celBACH operon, in the recombinant E. coli host. / AFRIKAANSE OPSOMMING: Sellulose (' n polimeer van p-l,4-gekoppelde glukose) is die volopste bron van hernubare koostof in die natuur. Effektiewe afbraak van sellulose word deur die sinnergistiese werking van drie ensiernklasse bewerkstellig: endoglukanases (EG), sellobiohidrolases (CBH) en P-glukosidases. p-Glukosidases behoort tot 'n heterogene groep ensieme met 'n wye substraatspesifisiteit m.b.t. sellobiose en verskeie ariel- and alkiel-ê-n-glukosidiesc verbindings. Alhoewel hierdie ensieme primêr as kataliste vir die omskakeling van sellulose afbraak-produkte funksioneer, stimuleer hulle ook die mate waartoe sellulose hidroliese plaasvind deur eindprodukinhibisie van EG en CBH op te hef. Sellobiose word algemeen deur verskeie genera van die gram-negatiewe, gram-positiewe en Archae bakterieë gemetaboliseer. Die sellobiose-spesifieke fosfoenolpirovaatfosfotransportsisteem (PTS) is reeds is in verskeie bakterië, insluitende die Bacillus spesies, beskryf. In hierdie studie word die sifting van 'n Bacillus pumilus genoombiblioteek m.b.V. 'n chromofoor analoog van sellobiose, p-nitrofeniel-p-o-glukopiranosied (pNPG), vir die teenwoordigheid van gene wat moontlike sellobiose-benutting in Escherichia coli kan bewerkstellig, beskryf. Die DNA-volgorde van die mees aktiewe kloon is bepaal en daaropvolgende analiese van die DNA-volgorde het vier aangrensende oopleesrame geïdentifiseer. 'n Operon (celBACH), bestaande uit vier gene, wat onderskeidelik vir die ensiem II (gekodeer deur celB, celA en celC) en fosfo-B-glukosidase (gekodeer deur celH) van die sellobiose-spesifieke PTS van B. pumilus kodeer, is vanaf die DNA-volgorde afgelei. Die aminosuuropeenvolging van die celH-geen het goeie homologie met P-glukosidases van Bacillus halodurans (74.2%), B. subtilis (72.7%) en Listeria monocytogenes (62.2%) getoon. Belyning van die DNA-volgordes het aangedui dat die celH geenproduk saam met die familie 1 glikosielhidrolases gegroepeer kan word. Hierdie familie gebruik 'n hidrolitiese meganisme waartydens die stoigiometriese posisie van die anomeriese koolstof behou word. PTS-aktiwiteit van die rekombinante E. coli ras, wat die celBACH gene uitdruk, is in vivo bepaal. Die optimale temperatuur en pH waarby die rekombinante ras pNPG hidroliseer, is onderskeidelik pH 7.5 en 45°C. Alhoewel die ensiernkompleks baie sensitief is vir glukose, is dit nie 'n wesenlike probleem nie, omdat aktief groeiende E. coli selle glukose teen 'n baie vinnige tempo benut. Die celBACH operon het onder beheer van 'n konstitiewe promotor in E coli die rekombinante gasheer in staat gestelom sellobiose as 'n koolstofbron te benut. Die benutting van sellobiose word egter aan die teenwoordigheid van 'n lae konsentrasie glukose (0.01 %) gekoppel. Hierdie verskynsel dui op die kritiese rol van fosfoenolpirovaat (PEP) as die fosfaatdonor gedurende PTS-gebaseerde transport. Glukose speel waarskynlik 'n rol in die indusering van glikoliese, en sodoende die produksie van PEP as tussenproduk. Verder kan afgelei word dat die algemene PTS komponente (ensiem I en HPr) van E. coli die B. pumilis CelBACH-sisteem komplementeer en derhalwe funksionering van die celBACH operon in E. coli toelaat.
18

Genetic engineering of the yeast Saccharomyces cerevisiae to ferment cellobiose

Van Rooyen, Ronel, 1976- 03 1900 (has links)
Dissertation (PhD)--Stellenbosch University, 2007. / PCT patent registered: https://www.google.com/patents/WO2009034414A1?cl=en&dq=pct/ib2007/004098&hl=en&sa=X&ei=b7AxUsSZK4jB0gWi14HgCQ&ved=0CEkQ6AEwAg USA: https://www.google.com/patents/US20110129888?dq=pct/ib2007/004098&ei=b7AxUsSZK4jB0gWi14HgCQ&cl=en / USA patent registered: https://www.google.com/patents/US20110129888?dq=pct/ib2007/004098&ei=b7AxUsSZK4jB0gWi14HgCQ&cl=en / ENGLISH ABSTRACT: The conversion of cellulosic biomass into fuels and chemicals has the potential to positively impact the South African economy, but is reliant on the development of low-cost conversion technology. Perhaps the most important progress to be made is the development of “consolidated bioprocessing” (CBP). CBP refers to the conversion of pretreated biomass into desired product(s) in a single process step with either a single organism or consortium of organisms and without the addition of cellulase enzymes. Among the microbial hosts considered for CBP development, Saccharomyces cerevisiae has received significant interest from the biotechnology community as the yeast preferred for ethanol production. The major advantages of S. cerevisiae include high ethanol productivity and tolerance, as well as a well-developed gene expression system. Since S. cerevisiae is non-cellulolytic, the functional expression of at least three groups of enzymes, namely endoglucanases (EC 3.2.1.4); exoglucanases (EC 3.2.1.91) and β-glucosidases (EC 3.2.1.21) is a prerequisite for cellulose conversion via CBP. The endo- and exoglucanases act synergistically to efficiently degrade cellulose to soluble cellodextrins and cellobiose, whereas the β-glucosidases catalyze the conversion of the soluble cellulose hydrolysis products to glucose. This study focuses on the efficient utilization of cellobiose by recombinant S. cerevisiae strains that can either hydrolyse cellobiose extracellularly or transport and utilize cellobiose intracellularly. Since it is generally accepted that S. cerevisiae do not produce a dedicated cellobiose permease/transporter, the obvious strategy was to produce a secretable β-glucosidase that will catalyze the hydrolysis of cellobiose to glucose extracellularly. β-Glucosidase genes of various fungal origins were isolated and heterologously expressed in S. cerevisiae. The mature peptide sequence of the respective β-glucosidases were fused to the secretion signal of the Trichoderma reesei xyn2 gene and expressed constitutively from a multi-copy yeast expression vector under transcriptional control of the S. cerevisiae PGK1 promoter and terminator. The resulting recombinant enzymes were characterized with respect to pH and temperature optimum, as well as kinetic properties. The maximum specific growth rates (μmax) of the recombinant strains were compared during batch cultivation in high-performance bioreactors. S. cerevisiae secreting the recombinant Saccharomycopsis fibuligera BGL1 enzyme was identified as the best strain and grew at 0.23 h-1 on cellobiose (compared to 0.29 h-1 on glucose). More significantly, was the ability of this strain to anaerobically ferment cellobiose at 0.18 h-1 (compared to 0.25 h-1 on glucose). However, extracellular cellobiose hydrolysis has two major disadvantages, namely glucose’s inhibitory effect on the activity of cellulase enzymes as well as the increased risk of contamination associated with external glucose release. In an alternative approach, the secretion signal from the S. fibuligera β-glucosidase (BGL1) was removed and expressed constitutively from the above-mentioned multi-copy yeast expression vector. Consequently, the BGL1 enzyme was functionally produced within the intracellular space of the recombinant S. cerevisiae strain. A strategy employing continuous selection pressure was used to adapt the native S. cerevisiae disaccharide transport system(s) for cellobiose uptake and subsequent intracellular utilization. RNA Bio-Dot results revealed the induction of the native α-glucoside (AGT1) and maltose (MAL) transporters in the adapted strain, capable of transporting and utilizing cellobiose intracellularly. Aerobic batch cultivation of the strain resulted in a μmax of 0.17 h-1 and 0.30 h-1 when grown in cellobiose- and cellobiose/maltose-medium, respectively. The addition of maltose significantly improved the uptake of cellobiose, suggesting that cellobiose transport (via the combined action of the maltose permease and α-glucosidase transporter) is the rate-limiting step when the adapted strain is grown on cellobiose as sole carbon source. In agreement with the increased μmax value, the substrate consumption rate also improved significantly from 0.25 g.g DW-1.h-1 when grown on cellobiose to 0.37 g.g DW-1.h-1 upon addition of maltose to the medium. The adapted strain also displayed several interesting phenotypical characteristics, for example, flocculation, pseudohyphal growth and biofilm-formation. These features resemble some of the properties associated with the highly efficient cellulase enzyme systems of cellulosome-producing anaerobes. Recombinant S. cerevisiae strains that can either hydrolyse cellobiose extracellularly or transport and utilize cellobiose intracellularly. Both recombinant strains are of particular interest when the final goal of industrial-scale ethanol production from cellulosic waste is considered. However, the latter strain’s ability to efficiently remove cellobiose from the extracellular space together with its flocculating, pseudohyphae- and biofilm-forming properties can be an additional advantage when the recombinant S. cerevisiae strain is considered as a potential host for future CBP technology. / AFRIKAANSE OPSOMMING: Die omskakeling van sellulose-bevattende biomassa na brandstof en chemikalieë beskik oor die potensiaal om die Suid-Afrikaanse ekonomie positief te beïnvloed, indien bekostigbare tegnologie ontwikkel word. Die merkwaardigste vordering tot dusvêr kon in die ontwikkeling van “gekonsolideerde bioprosessering” (CBP) wees. CBP verwys na die eenstap-omskakeling van voorafbehandelde biomassa na gewenste produkte met behulp van ‘n enkele organisme of ‘n konsortium van organismes sonder die byvoeging van sellulase ensieme. Onder die mikrobiese gashere wat oorweeg word vir CBP-ontwikkeling, het Saccharomyces cerevisiae as die voorkeur gis vir etanolproduksie troot belangstelling by die biotegnologie-gemeenskap ontlok. Die voordele van S. cerevisiae sluit in hoë etanol-produktiwiteit en toleransie, tesame met ‘n goed ontwikkelde geen-uitdrukkingsisteem. Aangesien S. cerevisiae nie sellulose kan benut nie, is die funksionele uitdrukking van ten minste drie groepe ensieme, naamlik endoglukanases (EC 3.2.1.4); eksoglukanases (EC 3.2.1.91) en β-glukosidases (EC 3.2.1.21), ‘n voorvereiste vir die omskakeling van sellulose via CBP. Die sinergistiese werking van endo- en eksoglukanases word benodig vir die effektiewe afbraak van sellulose tot oplosbare sello-oligosakkariede en sellobiose, waarna β-glukosidases die finale omskakeling van die oplosbare sellulose-afbraak produkte na glukose kataliseer. Hierdie studie fokus op die effektiewe benutting van sellobiose m.b.v. rekombinante S. cerevisiae-rasse met die vermoeë om sellobiose ekstrasellulêr af te breek of dit op te neem en intrasellulêr te benut. Aangesien dit algemeen aanvaar word dat S. cerevisiae nie ‘n toegewyde sellobiosepermease/ transporter produseer nie, was die mees voor-die-hand-liggende strategie die produksie van ‘n β-glukosidase wat uitgeskei word om sodoende die ekstrasellulêre hidroliese van sellobiose na glukose te kataliseer. β-Glukosidase gene is vanaf verskeie fungi geïsoleer en daaropvolgend in S. cerevisiae uitgedruk. Die geprosesseerde peptiedvolgorde van die onderskeie β-glukosidases is met die sekresiesein van die Trichoderma reesei xyn2-geen verenig en konstitutief vanaf ‘n multikopie-gisuitdrukkingsvektor onder transkripsionele beheer van die S. cerevisiae PGK1 promotor en termineerder uitgedruk. Die gevolglike rekombinante ensieme is op grond van hul pH en temperatuur optima, asook kinetiese eienskappe, gekarakteriseer. Die maksimum spesifieke groeitempos (μmax) van die rekombinante rasse is gedurende aankweking in hoë-verrigting bioreaktors vergelyk. Die S. cerevisiae ras wat die rekombinante Saccharomycopsis fibuligera BGL1 ensiem uitskei, was as the beste ras geïdentifiseer en kon teen 0.23 h-1 op sellobiose (vergeleke met 0.29 h-1 op glukose) groei. Meer noemenswaardig is the ras se vermoë om sellobiose anaërobies teen 0.18 h-1 (vergeleke met 0.25 h-1 op glukose) te fermenteer. Ekstrasellulêre sellobiose-hidroliese het twee groot nadele, naamlik glukose se onderdrukkende effek op die aktiwiteit van sellulase ensieme, asook die verhoogde risiko van kontaminasie wat gepaard gaan met die glukose wat ekstern vrygestel word. ’n Alternatiewe benadering waarin die sekresiesein van die S. fibuligera β-glucosidase (BGL1) verwyder en konstitutief uitgedruk is vanaf die bogenoemde multi-kopie gisuitrukkingsvektor, is gevolg. Die funksionele BGL1 ensiem is gevolglik binne-in die intrasellulêre ruimte van die rekombinante S. cerevisiae ras geproduseer. Kontinûe selektiewe druk is gebruik om die oorspronklike S. cerevisiae disakkaried-transportsisteme vir sellobiose-opname and daaropvolgende intrasellulêre benutting aan te pas. RNA Bio-Dot resultate het gewys dat die oorspronklike α-glukosied (AGT1) en maltose (MAL) transporters in die aangepaste ras, wat in staat is om sellobiose op te neem en intrasellulêr te benut, geïnduseer is. Aërobiese kweking van die geselekteerde ras het gedui dat die ras teen 0.17 h-1 en 0.30 h-1 groei in onderskeidelik sellobiose en sellobiose/maltose-medium. Die byvoeging van maltose het die opname van sellobiose betekenisvol verbeter, waarna aangeneem is dat sellobiose transport (via die gekombineerde werking van die maltose permease en α-glukosidase transporter) die beperkende stap gedurende groei van die geselekteerde ras op sellobiose as enigste koolstofbron is. In ooreenstemming hiermee, het die substraatbenuttingstempo ook betekenisvol toegeneem van 0.25 g.g DW-1.h-1, gedurende groei op sellobiose, tot 0.37 g.g DW-1.h-1 wanneer maltose by die medium gevoeg word. Die geselekteerde ras het ook verskeie interessante fenotipiese kenmerke getoon, byvoorbeeld flokkulasie, pseudohife- en biofilm-vorming. Hierdie eienskappe kom ooreen met sommige van die kenmerke wat met die hoogs effektiewe sellulase ensiem-sisteme van sellulosomeproduserende anaerobe geassosieer word. Hierdie studie beskryf die suksesvolle konstruksie van ‘n rekombinante S. cerevisiae ras met die vermoë om sellobiose ekstrasellulêr af te breek of om dit op te neem en intrasellulêr te benut. Beide rekombinante rasse is van wesenlike belang indien die einddoel van industriële-skaal etanolproduksie vanaf selluloseafval oorweeg word. Die laasgenoemde ras se vermoë om sellobiose effektief uit die ekstrasellulêre ruimte te verwyder tesame met die flokkulasie, pseudohife- en biofilm-vormings eienskappe kan ‘n addisionele voordeel inhou, indien die rekombinante S. cerevisiae ras as ‘n potensiële gasheer vir toekomstige CBP-tegnologie oorweeg word.
19

Cellulolytic and hemicellulolytic enzymes of flammulina velutipes.

January 1994 (has links)
by Cheung Pui Yi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 124-135). / Abstract --- p.ii / Acknowledgements --- p.iv / List of Tables --- p.viii / List of Figures --- p.ix / List of Abbreviations --- p.xiii / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- General Background --- p.1 / Chapter 1.2 --- Occurrence and Structure of Cellulose --- p.1 / Chapter 1.3 --- Occurrence and Structure of Hemicelluloses --- p.4 / Chapter 1.4 --- Biodegradation of Cellulose and Hemicelluloses --- p.4 / Chapter 1.4.1 --- Cellulolytic and Hemicellulolytic Microorganisms --- p.4 / Chapter 1.4.2 --- Enzymes Involved in Cellulose Degradation --- p.10 / Chapter 1.4.2.1 --- "Endo-1,4-β-glucanases" --- p.12 / Chapter 1.4.2.2 --- "Exo-1,4-β-glucanases" --- p.14 / Chapter 1.4.2.3 --- β-Glucosidases --- p.16 / Chapter 1.4.2.4 --- Oxidative Enzymes --- p.18 / Chapter 1.4.3 --- Synergistic Action between Cellulolytic Enzymes --- p.19 / Chapter 1.4.4 --- Enzymes Involved in Hemicellulose Degradation --- p.21 / Chapter 1.4.4.1 --- "Endo-1,4-β-xylanases" --- p.22 / Chapter 1.4.4.2 --- β-Xylosidases --- p.24 / Chapter 1.4.4.3 --- Other Xylanolytic Enzymes --- p.24 / Chapter 1.4.5 --- Synergistic Action between Hemicellulolytic Enzymes --- p.25 / Chapter 1.5 --- Flammulina velutipes --- p.26 / Chapter 1.6 --- Aims of the Present Investigation --- p.27 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Organism --- p.28 / Chapter 2.2 --- Culture Medium --- p.28 / Chapter 2.3 --- Determination of the Optimal Growth pH of Flammulina velutipes --- p.29 / Chapter 2.4 --- "Preparation of Inoculum, Cultivation and Harvest of Fungal Cultures" --- p.30 / Chapter 2.5 --- Enzyme Assays --- p.30 / Chapter 2.5.1 --- "Exo-1,4-β-glucanase" --- p.30 / Chapter 2.5.2 --- "Endo-1,4-β-glucanase" --- p.31 / Chapter 2.5.3 --- "Endo-1,4-β-xylanase" --- p.34 / Chapter 2.5.4 --- Extracellular β-Glucosidase --- p.36 / Chapter 2.5.5 --- Cell-Associated β-Glucosidase --- p.38 / Chapter 2.5.6 --- Extracellular β-Xylosidase --- p.38 / Chapter 2.5.7 --- Cell-Associated β-Xylosidase --- p.38 / Chapter 2.6 --- Determination of Optimal Temperatures for Cellulolytic and Xylanolytic Enzymes --- p.39 / Chapter 2.7 --- Determination of the Optimal pH for Enzyme Reaction --- p.39 / Chapter 2.8 --- Protein Determination --- p.39 / Chapter 2.9 --- Determination of Enzyme Induction Patterns --- p.42 / Chapter 2.10 --- Elucidation of Cellulase Production Patterns in F. velutipes --- p.43 / Chapter 2.10.1 --- Native Polyacrylamide Gel Electrophoresis --- p.43 / Chapter 2.10.2 --- Activity Staining for Endoglucanases --- p.43 / Chapter 2.10.3 --- Activity Staining for β-Glucosidases --- p.44 / Chapter 2.10.4 --- Protein Staining --- p.44 / Chapter 2.10.5 --- Preparative Polyacrylamide Gel Electrophoresis --- p.44 / Chapter 2.10.6 --- Separation of Proteins and Partial Purification of Different Cellulase Species after Preparative Polyacrylamide Gel Electrophoresis --- p.45 / Chapter Chapter 3 --- Results / Chapter 3.1 --- Determination of the Optimal pH for Fungal Growth --- p.46 / Chapter 3.2 --- Determination of the Optimal Temperature for Cellulolytic and Xylanolytic Enzyme Activity --- p.48 / Chapter 3.3 --- Determination of the Optimal pH for Enzyme Reaction --- p.64 / Chapter 3.4 --- Time Course Experiments on the Production of Cellulolytic and Hemicellulolytic Enzymes --- p.72 / Chapter 3.4.1 --- Production of Cellulolytic Enzymes --- p.72 / Chapter 3.4.2 --- Production of Hemicellulolytic Enzymes --- p.77 / Chapter 3.5 --- Determination of Enzyme Induction Patterns --- p.82 / Chapter 3.5.1 --- Induction of Exoglucanase Production --- p.82 / Chapter 3.5.2 --- Induction of Endoglucanase Production --- p.84 / Chapter 3.5.3 --- Induction of Extracellular β-Glucosidase Production --- p.86 / Chapter 3.5.4 --- Induction of β-Xylanase Production --- p.88 / Chapter 3.5.5 --- Induction of Extracellular β-Xylosidase Production --- p.90 / Chapter 3.5.6 --- Changes in Extracellular Protein Levels in DMS Media Supplemented with Different Substrates --- p.92 / Chapter 3.5.7 --- Changes in Reducing Sugar Levels in DMS Media Supplemented with Different Substrates --- p.94 / Chapter 3.6 --- Partial Purification of Different Cellulases Species Produced by Flammulina velutipes --- p.96 / Chapter 3.6.1 --- Native Polyacrylamide Gel Electrophoresis --- p.96 / Chapter 3.6.2 --- Activity Staining for Endoglucanases --- p.96 / Chapter 3.6.3 --- Activity Staining for β-Glucosidases --- p.96 / Chapter 3.6.4 --- Assay of Cellulolytic Enzymes after Preparative Polyacrylamide Gel Electrophoresis --- p.101 / Chapter Chapter 4 --- Discussion / Chapter 4.1 --- Optimal Conditions for Cellulolytic and Hemicellulolytic Enzymes of F. velutipes --- p.105 / Chapter 4.1.1 --- Optimal Temperature for Enzymic Reaction --- p.105 / Chapter 4.1.2 --- Optimal pH for Enzymic Reaction --- p.106 / Chapter 4.2 --- Production of Cellulolytic and Hemicellulolytic Enzymes --- p.109 / Chapter 4.2.1 --- Production of Cellulolytic Enzymes --- p.109 / Chapter 4.2.2 --- Production of Hemicellulolytic Enzymes --- p.110 / Chapter 4.3 --- Enzyme Induction Patterns --- p.111 / Chapter 4.4 --- Partial Purification of Different Cellulase Species Produced by Flammulina velutipes --- p.116 / Chapter 4.5 --- Conclusion --- p.121 / Chapter 4.6 --- Further Studies --- p.123 / List of References --- p.124
20

Biodegradation of cellulose acetate reverse osmosis membranes

Bell, Pamela Elizabeth January 1981 (has links)
No description available.

Page generated in 0.1051 seconds