• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 336
  • 198
  • 41
  • 18
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 765
  • 765
  • 765
  • 199
  • 198
  • 92
  • 64
  • 54
  • 53
  • 52
  • 51
  • 45
  • 41
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Neurabin's Influence on Striatal Dependent Behaviors

Wesley Corey (13118523) 19 July 2022 (has links)
<p> The striatum is a key brain region involved in regulating motor output and integration. The dorsal and ventral subdivisions of the striatum work in concert to mediate the reinforcing and motor behavioral outputs of the striatum. Moreover, dysfunction of these striatal regions is involved in various diseases including Parkinson’s disease and drug addiction. Therefore, understanding and characterizing biochemical and molecular changes within the striatum associated with these diseases is key in devolving novel therapeutics to treat these disease states. The main output neurons of the striatum are GABAergic, medium-spiny neurons (MSNs), and striatal functionality is mediated by neuroplastic changes in MSN activity. Within MSNs, dopaminergic receptor activation triggers a cascade of reversable phosphorylation, which is facilitated by the activation of specific protein kinases and inhibition of specific protein phosphatases. In comparison to the 350 serine/threonine protein kinases expressed within the striatum, there are only 40 major serine/threonine protein phosphatases. However, serine/threonine protein phosphatases, such as protein phosphatase 1 (PP1), gain their target specificity by interacting with phosphatase-targeting proteins. Within the striatum, the neurabins, termed neurabin and spinophilin, are the most abundant PP1 targeting proteins in dendritic spines. Spinophilin’s expression in the striatum has been strongly characterized, and spinophilin has been shown to regulate striatal-dependent motor-skill learning and amphetamine-induced locomotor sensitization. In contrast to spinophilin, neurabin’s expression within the striatum and its involvement in these striatal-dependent behaviors has not been fully probed. I found that neurabin expression in the striatum is not sex-dependent but is age-dependent. In addition to these data, I also present validation of new global, constitutive and conditional neurabin knock-out mouse lines. Finally, I present data that, unlike previous studies in spinophilin knockout mice, neurabin knockout mice have enhanced striatal-dependent motor-skill learning, but do not impact amphetamine-induced locomotor sensitization. Further characterization of neurabin’s expression in the striatum, and its role in these key striatal behaviors could provide a druggable target for therapeutics designed to address striatal dysfunction.   </p>
392

The Role of Gut-Brain Signalling in Functional Responses to Chronic Social Stress

Bharwani, Aadil January 2019 (has links)
Chronic stress has a cumulative physiological impact, causing dysregulation of multiple systems due to allostatic overload. There is growing evidence that one such system, the microbiota, is engaged in persistent bidirectional interplay with the brain—a phenomenon that influences neural function and behaviour. However, the functional role of the microbiota in stress-associated changes and the underlying pathways of communication are unknown. Using a murine model of depression, we demonstrate that chronic stress has top-down effects on the structure of the microbiota community, reducing its richness and diversity, altering its profile, and causing differential abundance of various bacterial genera. These structural changes have functional consequences, including in metabolic pathways responsible for the synthesis of short chain fatty acids, tryptophan, and tyrosine. Using a physiologically active bacteria, Lactobacillus rhamnosus (JB-1), we probed for bottom-up signalling in chronic stress. JB-1 attenuated deficits in anxiety-like and social behaviours, and induced systemic immunoregulatory effects, independent of affecting stress-induced changes in the microbiota. In examining possible mechanisms of gut-brain brain signalling, we observed that in unstressed mice, a single dose of JB-1 causes rapid expression of c-Fos—a marker of neuronal activation—in distributed areas of the brain within 165 minutes, absent behavioural changes. No such effects were observed with heat-killed JB-1, despite that both live and heat-killed preparations facilitated vagal activity. Sub-diaphragmatic vagotomy prevented neuronal activation in most but not all brain regions, suggesting that vagal signalling is critical but indicating the presence of additional independent pathways. Finally, only chronic JB-1 treatment increased ΔFosB expression in the brain, which is indicative of long-term neuronal adaptations, in association with behavioural changes. These studies demonstrate a role for bidirectional gut-brain signalling in chronic stress, and highlight the signalling pathways and brain regions through which gut bacteria exert their influence on host behaviour. / Thesis / Candidate in Philosophy / Stress, which is a leading risk factor for mental illnesses such as depression, drastically affects the microbiota—the community of intestinal bacteria. However, this influence is bidirectional as gut bacteria can also influence the brain. Thus, we sought to understand the role of the microbiota in the negative effects of stress and how these microorganisms interact with the brain. We observed that behavioural changes in mice after chronic stress were associated with inflammation and community-wide changes in the microbiota. Treatment with a bacterial strain, Lactobacillus rhamnosus (JB-1), attenuated changes in behaviour and inflammation, but had no effect on the microbiota composition. We observed that the brain rapidly responded to JB-1 via the vagus nerve, and that chronic treatment caused long-term changes in brain regions. This work will allow us to discover novel pathways that can be targeted with greater specificity in clinical settings, providing an innovative approach to treatment of psychiatric conditions.
393

HYALURONAN BASED BIOMATERIALS FOR CENTRAL NERVOUS TISSUE REGENERATION

Baiget Orts, María Amparo 27 January 2012 (has links)
The aim of this Thesis is to investigate the use of hyaluronic acid as a material for the design of scaffolds aimed at CNS regeneration. The motivation comes from the need of searching for new strategies that allow regeneration in the central nervous system. In degenerative diseases, such as Parkinson's disease, where the progressive loss of neuronal subpopulations occurs, a permissive environment able to support regeneration and connectivity of neurons from the host tissue may be a promising therapy to recover lost functionalities. In this Thesis we have focused on the development of structures able to integrate within the brain, supporting neural cells attachment and survival. We hypothesized that hyaluronic acid provides an enabling environment and appropriate for regeneration due to its biocompatibility and diverses physiological applications. Biocompatible hydrogels based on modified hyaluronic acid were synthesized. Covalently crosslinked hyaluronic acid hydrogels, alone or in combination with acrylic polymers, were synthesized and permitted to develop different porous structures which may serve in different applications as cell supply, cell repopulation or tissue regeneration. Highly porous with interconnected spherical pores, hollow tubes or multichanneled scaffolds were developed. The processes allow for a wide range of shapes for different applications within the scope of central nervous system regeneration. Furthermore, in vitro culture of human cell lines together with biomaterials was performed. A human microvascular endothelial cell line (hCMEC/D3) and a human glioma cell line (U373) were chosen for the studies. Experiments were focused on the interaction between hyaluronan based scaffolds and those cell lines composing the blood-brain-barrier (BBB) in the central nervous system. Biocompatibility, viability and phenotype characteristics were assessed. / Baiget Orts, MA. (2012). HYALURONAN BASED BIOMATERIALS FOR CENTRAL NERVOUS TISSUE REGENERATION [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14576
394

Structures based on semi-degradable biomaterials for neural regeneration in the central nervous system

Perez Garnes, Manuel 14 April 2015 (has links)
Se pretende obtener un material semibiodegradable basado en ácido hialurónico químicamente enlazado a cadenas de polímeros acrílicos. Los hidrogeles de ácido hialurónico presentan en general buenas características para su utilización en regeneración del sistema nervioso central: es biodegradable, es un componente importante del tejido neural, sus propiedades mecánicas son semejantes a las del tejido cerebral, promueve la formación de nuevos capilares (angiogénesis), y limita la inflamación. Con este nuevo material se pretende mejorar el excesivo grado de hinchado en medio fisiológico, su rápida degradación, mejorar la adhesión celular, además la matriz permanente de las cadenas acrílicas pueden actuar como un soporte permanente durante el proceso regenerativo sin que se produzca una pérdida brusca de propiedades mecánicas y estructurales. El trabajo consiste en caracterizar este nuevo material así como los productos intermedios necesarios para su obtención final, comparándolo con las propiedades de un hidrogel de ácido hialurónico sin incorporar cadenas acrílicas. Los estudios celulares se llevaran a cabo in vitro, como fase preliminar para futuros implantes en el cortex cerebral, estudiando la capacidad de diferenciación de precursores neurales y de generación de nuevos capilares con el fenotipo típico de la barrera hematoencefálica, mediante el estudio de cocultivos de precursores neurales y células endoteliales. / Perez Garnes, M. (2015). Structures based on semi-degradable biomaterials for neural regeneration in the central nervous system [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48799
395

Tissue engineering approaches for brain injury applications

Speccher, Alessandra 26 May 2020 (has links)
Due to the limited regenerative capacity of the central nervous system (CNS) upon injury, regenerative medicine and tissue engineering strategies show great promise for treatment. These aim to restore tissue functions by combining principles of cell biology and engineering, using biomaterial scaffolds which can help in recapitulating the 3D environment of the brain and improving cell survival after grafting. Stroke and TBI are severe forms of disruptions of brain architecture, and two of the leading causes of mortality and morbidity worldwide, as no effective treatments are available. Several studies report how neural stem cells (NSCs) are able to improve functional recovery upon transplantation. However, the efficacy of these treatments is limited because of the mortality these cells are subject to after transplantation. In this context, the transplantation of mesenchymal cells (MSCs) has shown beneficial effects by secreting molecules and factors that help in the healing process. In this study, we tested alginate-based hydrogels as candidates to support human NSCs and MSCs transplantation into the brain, in the view of exploiting the beneficial effects of both and analyzing whether their combined use could have a synergistic effect. In the first part, we studied the suitability of alginate-based scaffolds for the three-dimensional encapsulation and culture of hNSCs and hMSCs. We analyzed their ability to support cell survival, and we evaluated whether changes in their concentration or modifications with ECM molecules could influence cell viability. We showed that the best survival conditions are found when using an RGDs-functionalized alginate scaffold at a low concentration (0.5% w/v). We then worked on the identification of the best conditions for MSCs culture and the definition of coculture conditions. Since serum is necessary for MSCs, but it is reported to induce glial differentiation of NSCs, we explored two different experimental setups. On one hand, we investigated the feasibility to exploit biomaterials to create "compartmentalized" cocultures that would at least partially retain serum. In parallel, we positively observed that MSCs can survive, proliferate and maintain their stemness even in absence of serum, supporting the hypothesis that the use of “compartmentalized” coculture systems would likely be exploitable for MSCs culture. Finally, we tested the reported beneficial effects of MSCs in our 3D culture system, in which NSCs do not show a great viability. Encapsulated NSCs were cultured on an MSCs monolayer, and we analyzed cell survival, proliferation, differentiation and stemness retention. Gene expression analyses highlighted that NSCs maintain stemness characteristics, but we were not able to observe any improvement in NSCs survival in coculture, with respect to standard culture. In the last part of the project we decided to test our system for tissue engineering approaches, exploiting axotomized brain organotypic slices (OSCs). We evaluated the presence of cells 7 days after transplantation, their integration in the OSCs and glial response. Preliminary results suggest that the biomaterial does not cause activation of glial cells, although stem cells do not seem to migrate out of scaffold and integrate into the brain slice.
396

Optical projection tomography based 3D-spatial and quantitative assessments of the diabetic pancreas /

Alanentalo, Tomas, January 2008 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2008. / Härtill 4 uppsatser.
397

Rôle de la Galectin-3 extra cellulaire dans la migration des cellules B à travers les barrières du système nerveux central dans le contexte de la sclérose en plaques

Lépine, Paula 12 1900 (has links)
No description available.
398

Migration and adhesion associated molecules in lymphoma biology and their potential roles as biomarkers

Lemma, S. (Siria) 22 August 2017 (has links)
Abstract Lymphomas are a heterogeneous group of malignancies that arise from lymphatic tissues. Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma sub-type. It is an aggressive malignancy with an increasing incidence. The prognosis of DLBCL has improved significantly, but problems also remain. The clinical significance of central nervous system (CNS) relapses has become increasingly important. As secondary CNSL (sCNSL) and primary CNS lymphoma (PCNSL) are known to have poor prognoses; the prevention of sCNSL is of crucial importance. Peripheral T-cell lymphomas (PTCL) are rare neoplasms and include several lymphoma subtypes that possess complex and also overlapping morphological and immunophenotypic characteristics. The identification of different entities has improved, but the biological knowledge remains scarce when compared to DLBCL. The optimal treatment schemas for PTCLs are still lacking and they have long been treated with the same therapies as B-cell lymphomas, mainly with suboptimal treatment results. The aim of this study was to identify poor prognostic markers in DLBCL and PTCLs and potential biological markers for the prediction of DLBCL CNS relapse. The study material included patients with systemic DLBCL without CNS affision (sDLBCL), sCNSL, PCNSL and PTCLs. The expression of epithelial-mesenchymal transition (EMT) transcription factors (TFs), chemokines and their receptors and adhesion-, migration- and inflammatory responses-associated molecules were studied by means of immunohistochemistry. IEM was used to verify the specific subcellular location of the studied molecules. GEP was performed on 12 PTCL samples in order to compare the poor prognosis group with the good prognosis group and on one sDLBCL and one sCNSL sample from the time of primary diagnosis. The EMT TFs were found to be expressed in both DLBCL and PTCLs, where they ultimately proved to have prognostic relevance as well. In PTCLs, these TFs were able to delineate a disease group with a specific gene-expression profile. CXCR4, CXCR5, ITGA10, PTEN and CD44 were found to be differently expressed between DLBCL cases with CNS affision when compared to those without CNS disease. These molecules seem to play a role in the development of CNS relapse and hopefully, if further verified, will lead towards the identification of biological markers for CNS relapse prediction. / Tiivistelmä Lymfoomat ovat heterogeeninen ryhmä imukudossyöpiä, joista diffuusi suurisoluinen B-solulymfooma (DLBCL) on yleisin alatyyppi. Se on aggressiivinen maligniteetti, jonka insidenssi on noussut viime vuosina. DLBCL potilaiden ennuste on parantunut merkittävästi, mutta yhä osa potilaista menehtyy tautiinsa. DLBCL:n keskushermostorelapsin kliininen merkitys on tänä päivänä aiempaa suurempi. Sekundaarisen keskushermostolymfooman (sCNSL) ja primaarin aivolymfooman (PCNSL) ennusteet ovat nykyhoidoilla huonoja, joten keskushermostorelapsin ennaltaehkäiseminen on tärkeää. Perifeeriset T-solulymfoomat (PTCLs) ovat ryhmä harvinaisia neoplasioita, joka sisältää useita eri alatyyppejä, joiden morfologiset ja immunofenotyyppiset ominaisuudet ovat monimuotoisia ja osin päällekkäisiä. Eri entiteettien indentifiointi on parantunut, mutta PTCL:ien biologinen tietämys on yhä DLBCL:aa heikompaa. PTCL:ien optimaalinen hoito ei ole selvillä ja tätä tautiryhmää on pitkään hoidettu samoilla hoidoilla kuin DLBCL:aa, mutta huonommilla hoitotuloksilla. Tutkimuksen tavoitteena oli löytää huonon ennusteen markkereita, joilla myös pystyttäisiin ennustamaan DLBCL:n keskushermostorelapsia. Aineisto koostui DLBCL, sCNSL, PCNSL ja PTCL näytteistä. Immunohistokemiallisilla värjäyksillä tutkittiin epiteliaalis-mesenkymaalisen transition (EMT) transkriptiotekijöitä (TF), kemokiinireseptoreita sekä adheesioon-, migraatioon ja inflammaatioon assosioituja molekyylejä. Immunoelektronimikroskopialla varmennettiin molekyylien lokalisaatio soluissa. Geeniekspressioprofiloinnilla (GEP) verrattiin kahdentoista hyvän ja huonon ennusteen ryhmään kuuluvan PTCL näytteen välisiä geeniekspressioeroja sekä kahden DLBCL potilaan näytteitä, joista toiselle kehittyi keskushermostorelapsi. EMT TF:ien ekspressiota nähtiin DLBCL ja PTCL näytteissä, joissa niillä myös todettiin olevan ennusteellista merkitystä. PTCL:ssa TF:t pystyivät erottelemaan tautiryhmän, jolla oli oma spesifinen geeniekspressioprofiilinsa. CXCR4, CXCR5, ITGA10, PTEN ja CD44 ekspressio oli erilaista systeemisissä DLBCL tapauksissa verrattuna sCNSL tapauksiin. Edellä mainituilla molekyyleillä näyttää olevan oma roolinsa keskushermostotaudin kehittymisessä ja jos nämä tulokset pystytään vahvistamaan tulevissa tutkimuksissa, johtavat ne toivottavasti kohti keskushermostorelapsiriskin tarkempaa tunnistamista.
399

Regeneration and plasticity of descending propriospinal neurons after transplantation of Schwann cells overexpressing glial cell line-derived neurotrophic factor following thoracic spinal cord injury in adult rats

Deng, Lingxiao 18 May 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / After spinal cord injury (SCI), poor axonal regeneration of the central nervous system, which mainly attributed to glial scar and low intrinsic regenerating capacity of severely injured neurons, causes limited functional recovery. Combinatory strategy has been applied to target multiple mechanisms. Schwann cells (SCs) have been explored as promising donors for transplantation to promote axonal regeneration. Among the central neurons, descending propriospinal neurons (DPSN) displayed the impressive regeneration response to SCs graft. Glial cell line-derived neurotrophic factor (GDNF), which receptor is widely expressed in nervous system, possesses the ability to promote neuronal survival, axonal regeneration/sprouting, remyelination, synaptic formation and modulate the glial response. We constructed a novel axonal permissive pathway in rat model of thoracic complete transection injury by grafting SCs over-expressing GDNF (SCs-GDNF) both inside and caudal to the lesion gap. Behavior evaluation and histological analyses have been applied to this study. Our results indicated that tremendous DPSN axons as well as brain stem axons regenerated across the lesion gap back to the caudal spinal cord. In addition to direct promotion on axonal regeneration, GDNF also significantly improved the astroglial environment around the lesion. These regenerations caused motor functional recovery. The dendritic plasticity of axotomized DPSN also contributed to the functional recovery. We applied a G-mutated rabies virus (G-Rabies) co-expressing green fluorescence protein (GFP) to reveal Golgi-like dendritic morphology of DPSNs and its response to axotomy injury and GDNF treatment. We also investigated the neurotransmitters phenotype of FluoroGold (FG) labeled DPSNs. Our results indicated that over 90 percent of FG-labeled DPSNs were glutamatergic neurons. DPSNs in sham animals had a predominantly dorsal-ventral distribution of dendrites. Transection injury resulted in alterations in the dendritic distribution, with dorsal-ventral retraction and lateral-medial extension of dendrites. Treatment with GDNF significantly increased the terminal dendritic length of DPSNs. The density of spine-like structures was increased after injury and treatment with GDNF enhanced this effect.
400

The potential of exercise to reverse stress induced abnormalities in the rat brain

Marais, Lelanie 03 1900 (has links)
Thesis (PhD (Biomedical Sciences. Medical Physiology.))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Adverse experiences during early life causes alterations in the development of the central nervous system structures that may result in abnormal functioning of the brain. It is well known that, in humans, adverse early-life experiences such as social separation, deprivation, maternal neglect and abuse increase the risk of developing psychiatric disorders, such as depression, later in life. We used maternal separation in the rat as a model for early life stress to firstly determine how different brain systems are dysregulated by this stressful experience and additional chronic or acute stress during adulthood. Rat pups were separated from their mothers on postnatal day 2-14 for 3 hours per day while control rats were normally reared. The behavior, stress response, neurotrophin, apoptotic marker and serotonin levels in the ventral hippocampus, striatum and frontal cortex were measured during adulthood. A different group of maternally separated rats were allowed chronic voluntary exercise and similar measurements were done to determine whether exercise was able to normalize the deficits caused by early life stress. Differentially expressed cytosolic proteins of the ventral hippocampus of maternally separated rats versus normally reared rats were also identified. Protein expression levels of maternally separated rats that received chronic voluntary exercise or escitalopram treatment were subsequently determined to unravel the mechanism of therapeutic action for these two interventions. We found that maternal separation increased the baseline corticosterone response of rats and induced a blunted adrenocorticotropin hormone after acute restraint stress. Baseline neurotrophin levels were significantly decreased in the ventral hippocampus. Maternal separation followed by chronic restraint stress during adulthood resulted in increased depressive-like behavior compared to control rats. Maternal separation alone or followed by acute restraint stress during adulthood induced changes in apoptotic marker expression in the striatum and frontal cortex. In rats subjected to maternal separation and chronic restraint stress during adulthood, we found that chronic voluntary exercise decreased their depressive-like behavior and increased brain derived neurotrophin levels in the striatum. Serotonin levels were not affected by maternal separation, but chronic voluntary exercise increased serotonin in the ventral hippocampus of normally reared rats. Maternal separation induced a number of changes in the expression of cytosolic proteins and these stress-induced changes were identified in proteins relating to cytoskeletal structure, neuroplasticity, oxidative stress, energy metabolism, protein metabolism, and cell signaling. Chronic voluntary exercise was able to restore the expression levels of a number of proteins affected by maternal separation that increased the risk for neuronal death. When comparing the efficacy of exercise to that of escitalopram treatment it was evident that, in contrast to exercise, escitalopram targets a different subset of proteins affected by maternal separation, except for a few involved in energy metabolism pathways and neuroprotection. In this study we have shown that chronic voluntary exercise has therapeutic effects in maternally separated rats, decreasing depressive-like behavior, increasing neurotrophin expression and restoring cytosolic protein expression that were dysregulated by early life stress. / AFRIKAANSE OPSOMMING: Negatiewe stresvolle ervarings gedurende die vroeë stadium van ‘n mens se lewe veroorsaak veranderinge in die ontwikkeling van breinstrukture en het ‘n nadelige uitwerking op die funksionering van die brein. Dit is bekend dat stresvolle ervarings in kinders, byvoorbeeld sosiale afsondering, verwaarlosing en mishandeling, die risiko vir die ontwikkeling van psigiatriese steurings soos depressie gedurende volwassenheid kan verhoog. In hierdie studie gebruik ons moederlike skeiding van neonatale rotte as ‘n model vir vroeë lewensstres om te bepaal hoe dit verskillende sisteme in die brein negatief beinvloed, en dan ook die effek van addisionele kroniese of akute stres gedurende volwassenheid. Die neonatale rotte is weggeneem van hulle moeders af vanaf dag 2 tot 14 vir 3 ure elke dag terwyl kontrole rotte by hulle moeders gebly het. Die gedrag, stres respons, neurotrofiene, apoptotiese merkers en serotonien vlakke is gemeet in die ventrale hippokampus, frontale korteks en striatum gedurende volwassenheid. Rotte wat van hulle moeders geskei is, is dan toegelaat om vir ses weke in wiele te hardloop om te bepaal of kroniese vrywillige oefening die negatiewe effekte wat veroorsaak is deur stres kan ophef. ‘n Bepaling van sitosoliese proteien uitdrukking in die ventrale hippokampus is ook gedoen om die uitwerking van moederlike skeiding op proteienvlak vas te stel. Hierdie protein data is dan vergelyk met die van gestresde rotte wat kroniese oefening of escitalopram behandeling ontvang het om die meganisme van werking van beide behandelings te bepaal. Ons het gevind dat moederlike skeiding die rustende kortikosteroon vlakke van rotte verhoog terwyl dit adrenokortikotropien vlakke na akute stres inhibeer. Moederlike skeiding het ook die neurotrofien vlakke in die ventrale hippokampus verlaag en addisionele kroniese stres gedurende volwassenheid het ‘n verhoging in depressie-agtige gedrag veroorsaak. Moederlike skeiding alleen, sowel as gevolg deur akute stress gedurende volwassenheid het ook veranderinge in die uitdrukking van apoptotiese merkers in die striatum en frontale korteks veroorsaak. Kroniese vrywillige oefening na moederlike skeiding en addisionele stres gedurende volwassenheid kon depressie-agtige gedrag verlaag en neurotrofienvlakke in die striatum verhoog. Serotonien vlakke was nie beinvloed deur moederlike skeiding nie, maar oefening in kontrole rotte het serotonien verhoog in die ventrale hippokampus. Moederlike skeiding het heelwat veranderinge in die uitdrukking van sitosoliese proteiene van die ventrale hippokampus veroorsaak wat ingedeel kan word in die volgende funksionele kategorieë: sitoskelet, neuroplastisiteit, oksidatiewe stres, energiemetabolisme, proteinmetabolisme en seintransduksie. Oefening kon die uitdrukking van verskeie stres-geïnduseerde veranderinge in proteiene weer herstel terwyl dit wou bleik asof escitalopram se meganisme van werking op ‘n ander vlak geskied. Ons bevindinge bewys dat kroniese vrywillige oefening ‘n goeie behandeling is na vroeë lewenstres en dat dit depressiewe gedrag verminder, neurotrofien vlakke verhoog en sitosoliese proteien skeiding alleen, sowel as gevolg deur akute stress gedurende volwassenheid het ook veranderinge in die uitdrukking van apoptotiese merkers in die striatum en frontale korteks veroorsaak. Kroniese vrywillige oefening na moederlike skeiding en addisionele stres gedurende volwassenheid kon depressie-agtige gedrag verlaag en neurotrofienvlakke in die striatum verhoog. Serotonien vlakke was nie beinvloed deur moederlike skeiding nie, maar oefening in kontrole rotte het serotonien verhoog in die ventrale hippokampus. Moederlike skeiding het heelwat veranderinge in die uitdrukking van sitosoliese proteiene van die ventrale hippokampus veroorsaak wat ingedeel kan word in die volgende funksionele kategorieë: sitoskelet, neuroplastisiteit, oksidatiewe stres, energiemetabolisme, proteinmetabolisme en seintransduksie. Oefening kon die uitdrukking van verskeie stres-geïnduseerde veranderinge in proteiene weer herstel terwyl dit wou bleik asof escitalopram se meganisme van werking op ‘n ander vlak geskied. Ons bevindinge bewys dat kroniese vrywillige oefening ‘n goeie behandeling is na vroeë lewenstres en dat dit depressiewe gedrag verminder, neurotrofien vlakke verhoog en sitosoliese proteien vlakke kan herstel.

Page generated in 0.1012 seconds