• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Serotonergic Neurons of Drosophila melanogaster Larvae: A Study of Their Development and Function

Moncalvo, Verόnica Gabriela Rodriguez 04 1900 (has links)
Drosophila melanogaster is an attractive model organism for the study of numerous fundamental processes including nervous system development and function. This is due to the power of Drosophila genetics combined with the high degree of similarity between this organism and vertebrate systems, not only at the molecular level but also at the cellular and behavioural levels. The first part of my thesis focused on trophic interactions occurring in Drosophila larval central nervous system. Specifically, it describes the interaction of serotonin (5HT)-producing neurons with other three groups of neurons: the larval photoreceptors expressing Rhodopsin 5 (Rh5), the photoreceptor subset expressing Rhodopsin 6 (Rh6), and the larval circadian pacemakers (LNv). I found that both Rh5-and Rh6-expressing fibers contact a 5-HT arborization in the larval optic neuropil, where the 5-HT processes also overlaps with the dendrites of the LNv. The results of my experiments also indicate that the Rh6-expressing terminus is the neural process providing the signal required for the outgrowth of the serotonergic arborization. Furthermore, proper branching of this arborization requires normal Rae function. These findings further support the importance of extrinsic and intrinsic signalling for the assembly ofthe nervous system. The remainder of my studies attempted to investigate candidate neurons modulating Drosophila larval photobehaviour. Using the larval response to light as a behavioural paradigm and neuronal silencing experiments, my results demonstrate that 5HT neurons located in the brain regulate the larval photoresponse during development. In addition, my findings suggest that this modulation occurs at a central level and that is mediated by 5-HT1A(Dro) receptors. These observations provide new insights into the functions of serotonergic neurons in Drosophila as well as how neuromodulators shape neuronal circuit function and ultimately behaviour. / Thesis / Doctor of Philosophy (PhD)
2

Les fondements neurophysiologiques de la latéralisation motrice : le paradigme des mouvements en miroir / Neurophysiological basis of motor lateralization : the mirror movements paradigm

Welniarz, Quentin 13 July 2016 (has links)
Le syndrome des mouvements en miroir congénitaux (MMC) est une maladie génétique caractérisée par l’existence de mouvements involontaires symétriques d’une main qui reproduisent à l’identique les mouvements volontaires de l’autre main. Deux structures sont impliquées dans la physiopathologie de cette maladie : le corps calleux (CC) et le faisceau corticospinal (FCS). Deux gènes ont été liés aux MMC à ce jour : DCC et RAD51. Tandis que DCC joue un rôle crucial dans le guidage des axones commissuraux, RAD51 intervient dans la réparation de l’ADN, et son rôle dans le développement du système moteur était inattendu.Chez la souris, nous avons étudié le rôle de RAD51 et DCC dans le développement du FCS et du CC, ainsi que l’implication de ces deux structures dans la latéralisation du contrôle moteur. Nous avons prouvé que DCC contrôle le guidage du FCS à la ligne médiane de façon indirecte. RAD51 intervient dans le développement du neocortex, mais son rôle précis dans le développement du système moteur demeure inconnu. Nous avons par ailleurs comparé un groupe de patients MMC à des volontaires sains afin d’étudier la latéralisation de l’activité corticale lors de la préparation motrice. L’activation et les interactions inter-hémisphériques des aires motrices sont anormales dès la préparation du mouvement chez les patients MMC. L’inhibition de l’aire motrice supplémentaire (AMS) chez les volontaires sains reproduit les défauts d’interactions inter-hémisphériques observés chez les patients. Ces résultats suggèrent que l’AMS est impliquée dans la préparation des mouvements latéralisés, potentiellement en modulant les interactions entre les deux hémisphères via le CC. / Mirror movements are involuntary symmetrical movements of one side of the body that mirror voluntary movements of the other side. Congenital mirror movements (CMM) is a rare genetic disorder transmitted in autosomal dominant manner, in which mirror movements are the only clinical abnormality. Two structures are involved in the physiopathology of CMM: the corpus callosum (CC) and the corticospinal tract (CST). The two main culprit genes identified so far are DCC and RAD51. While the role of DCC in commissural axons guidance during development is well known, RAD51 is involved in DNA repair, and its link with CMM was totally unexpected. In mice, we investigated the role of RAD51 and DCC in the development of the CC and CST, as well as the role of these two structures in motor lateralization. We showed that DCC controls CST midline crossing in an indirect manner. Our work clarified the role of RAD51 in neocortex development, but how RAD51 influences motor system development remains unknown. We compared a group of CMM patients with healthy volunteers to investigate the lateralization of cortical activity during movement preparation. We showed that activation of motor/premotor areas and interhemispheric interactions during movement preparation differed between the CMM patients and healthy volunteers. Transient inhibition of the supplementary motor area (SMA) in the healthy volunteers resulted in abnormal interhemispheric interactions during movement preparation, reminiscent of the situation observed in the patients. These results suggest the SMA is involved in lateralized movements preparation, potentially by modulating interhemispheric interactions via the CC.
3

Role of CG9650 in Neuronal Development And Function of Drosophila Melanogaster

Murthy, Smrithi January 2016 (has links) (PDF)
The nervous system is the most complex system in an organism. Functioning of the nervous system requires proper formation of neural cells, as well as accurate connectivity and signaling among them. While the major events that occur during these processes are known, the finer details are yet to be understood. Hence, an attempt was made to look for novel genes that could be involved in them. The focus of the present study is on CG9650, a gene that was uncovered in a misexpression screen, as a possible player in neuronal development in Drosophila melanogaster. The first chapter of the thesis reviews existing knowledge about neuronal development and function. The first section of this chapter explains in brief the formation and specification of neural stem cells, and their differentiation to neurons and glia. Sections 2 and 3 describe neuronal connectivity and signaling with respect to axon growth, synapse formation, function and plasticity. A comparison of invertebrate and vertebrate neuronal development is provided in section 4 of this chapter. This part also explains the use of Drosophila as a model for neuronal development and function. Chapter 2 describes the expression pattern of CG9650, which was characterized to gain insights into the possible role it plays during Drosophila neurogenesis.CG9650 is expressed in multiple cell types in the nervous system at the embryonic stage. Some of the cell sub-types have been identified from their morphology and position. Expression was restricted to neurons in the larval stage (except in the optic lobe, where it was expressed in precursors also), and continued in the pupal stage. No expression was seen in adults (except in the optic lobe). CG9650 has a putative DNA binding region, which bears homology to the mouse proteins CTIP1 and CTIP2, implying that CG9650 is possibly a transcription factor. In order to understand the function of CG9650, the protein was knocked down panneuronally. The resultant animals showed locomotor defects at both larval and adult stages, which have been described in chapter 3. Knock down larvae showed reduced displacement and speed of movement. The number of peristaltic cycles was also reduced in these animals but the cycle period was normal. In adults, movement was uncoordinated and righting reflex was lost, resulting in inability to walk, climb or fly. These results imply a defect in neuronal signaling. Sensory perception was unaffected in these animals. Stage specific knockdown of CG9650 indicated that the requirement for this protein is primarily during the larval stage. All CG9650-expressing neurons in the ventral nerve cord were glutamatergic, implying that its role in controlling locomotor activity is likely through glutamatergic circuits. Following up on these observations, signaling at the neuromuscular junction was assessed in CG9650 knock down animals. Chapter 4 discusses the signaling defects seen on CG9650 knock down, and the possible role of this protein. Electrophysiological recordings from Dorsal Longitudinal Muscles showed reduced and irregular neuronal firing in the knock down animals. These animals also had reduced bouton and active zone numbers. Moreover, overexpression of BRP, an active zone protein, rescued the locomotor defects caused by knock down of CG9650. Chapter 5 reports the effect of over expression of CG9650. Pan-neural over expression of CG9650 resulted in embryos with severe axon scaffolding defects, as well as aberrant neuronal and glial pattern. However, the incorrectly positioned glial cells in these embryos did not express CG9650, indicating that their aberrant positioning was probably due to incorrect signaling from the neurons. In conclusion, this study reports the requirement for CG9650, a hitherto unknown protein, in locomotor activity and signaling, thus ascribing for it a role in neuronal development and function of Drosophila melanogaster.
4

Contribution du récepteur GPR55 dans la formation des contacts synaptiques

Lacomme, Lucile 08 1900 (has links)
La synaptogenèse est un processus biologique aboutissant à la mise en place d’un réseau de connexions neuronales, par la genèse de synapses. La mise en place de ce réseau de connexions est essentielle au développement du système nerveux central (SNC) et de ses fonctions. Tout comme les autres étapes du développement du SNC, la synaptogenèse est régulée par une multitude de signaux cellulaires, et le système endocannabinoïde en fait partie. Les dérivés du cannabis tel que le Δ-9-tétrahydrocannabinol (THC) et le cannabidiol (CBD) sont capables de traverser la barrière placentaire et de se retrouver dans le lait maternel. Par leur interaction avec le SNC, entre autres, ces phytocannabinoïdes sont capables d’influencer son développement. Le récepteur couplé à une protéine G 55 (GPR55) est catégorisé comme récepteur atypique du système endocannabinoïde, et il est capable d’être antagonisé par le CBD. Il a été prouvé par de précédentes études qu’il est lui aussi impliqué dans le développement du SNC, notamment dans le guidage et la croissance des axones durant les périodes fœtale et périnatale. Dans la littérature, il est souvent rapporté que les signaux impliqués dans le guidage axonal le sont aussi dans la synaptogenèse. C’est pourquoi le présent mémoire vise à examiner le rôle du récepteur GPR55 et l’effet de sa modulation par le CBD dans la formation de contacts synaptiques. Le modèle utilisé pour cette étude est la culture de neurones corticaux issus d’embryons de souris de génotypes gpr55+/+ et gpr55-/-. Pour comprendre le rôle physiologique de GPR55 dans la synaptogenèse nous avons étudié l’effet de la délétion du récepteur GPR55 à deux temps, Day In Vitro (DIV) 9-10 au début de la synaptogenèse, et à DIV14-15 un temps plus avancé. Ensuite pour comprendre comment le CBD est capable d’influencer la formation de contacts synaptiques de manière dépendante ou non de GPR55, les cultures de neurones corticaux de chaque génotype ont été exposées à DIV9 pour 24h à différentes concentrations du CBD (0,3uM ou 0,6uM ou 1uM). Les effets sur la formation de contacts synaptiques ont été étudiés en immunocytochimie, en immunobuvardage et en électrophysiologie de type patch clamp. Les résultats montrent que la délétion de GPR55 entraine à DIV14-15 une augmentation de la densité des contacts synaptiques, mais une réduction de leur aire et de l’expression de la synaptophysine, en affectant l’activité synaptique. L’exposition au CBD 0,6uM et 1uM entrainent de manière dépendante ou partiellement dépendante à GPR55, une augmentation de la densité des contacts synaptiques sans affecter leur aire, l’expression de protéines synaptiques ainsi que l’activité synaptique. La fréquence de décharge des neurones est diminuée de manière dépendante de GPR55 après l’exposition au CBD 1uM. Ces résultats suggèrent que GPR55 pourrait être un signal important pour l’arrêt de la formation de nouvelles synapses et un signal d’induction pour la maturation des synapses existantes. / Synaptogenesis is a biological process that leads to the establishment of a network of neuronal connections through the genesis of synapses. The formation of this network of connections is essential for the development of the central nervous system (CNS) and its functions. Like other stages of CNS development, synaptogenesis is regulated by multiple cellular signals, and the endocannabinoid system is part of it. Cannabis derivatives such as Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) can cross the placental barrier and be present in breast milk. Through their interaction with the endocannabinoid system, among others, these phytocannabinoids can influence CNS development. The G protein-coupled receptor 55 (GPR55) is categorized as an atypical receptor of the endocannabinoid system, and it can be antagonized by CBD. Previous studies have shown that GPR55 is also involved in CNS development, particularly in the guidance and growth of axons during fetal and perinatal periods. It is often reported in the literature that the signals involved in axonal guidance are also involved in synaptogenesis. Therefore, this study investigates the role of the GPR55 receptor and the effect of its modulation by CBD in the formation of synaptic contacts. The model used for this study consists of cortical neuron cultures from mouse embryos gpr55+/+ and gpr55-/- . To understand the physiological role of GPR55 in synaptogenesis, we studied the effect of gpr55 deletion at two-time points: Day In Vitro (DIV) 9- 10 at the beginning of synaptogenesis, and DIV14-15 at a later time point. Then, to understand how CBD can influence the formation of synaptic contacts, whether dependent or independent of GPR55, cortical neuron cultures of each genotype were exposed to different concentrations of CBD (0.3µM or 0.6µM or 1µM) at DIV9 for 24 hours. The effects on the formation of synaptic contacts were studied through immunocytochemistry, western blot, and patch clamp electrophysiology. The results show that gpr55 deletion leads to an increase in synaptic contact density at DIV14-15 but a reduction in their area and synaptophysin expression, by affecting synaptic activity. Exposure to 0.6µM and 1µM CBD results in a GPR55-dependent or partially dependent increase in synaptic contact density without affecting their area, expression of synaptic proteins, and synaptic activity. The firing frequency of neurons is decreased in a GPR55- dependent manner after exposure to 1µM CBD. These results suggest that GPR55 could be an important signal for stopping the formation of new synapses and an induction signal for the maturation of existing synapses.
5

Controle epigenético do gene imprinted SNRPN durante o desenvolvimento e reprogramação nuclear em equídeos / Epigenetic control of the SNRPN imprinted gene during developmental and nuclear reprogramming in equids

Rigoglio, Nathia Nathaly 15 March 2016 (has links)
A tranferência nuclear de células somáticas (TNCS) está sendo utilizada para produzir cavalos de elite. No entanto, durante este procedimento pode ocorrer a perfuração da zona pelúcida, levando, ocasionalmente, à secção da massa celular interna, e conseqüente derivação de gêmeos monozigóticos. Além de serem relatadas alterações no processo de imprinting genômico, que conduzem ao desenvolvimento de doenças. Com a descoberta da possibilidade de reprogramar as células somáticas a um estado de pluripotência (iPSCs), estas células passaram a ser muito utilizadas em pesquisas de neurociência. Contudo, também ocorrem modificações epigenéticas durante esta reprogramação celular. Portanto, nossas hipóteses são que os gêmeos eqüinos gerados pela TNCS podem levar às irregularidades no desenvolvimento do sistema nervoso. O padrão de metilação do SNRPN nas estruturas dos fetos muares clonados, e as células iPSCs são diferentes dos padrões encontrados nos muares analisados. A expressão dos genes SNRPN, Necdin e UBE3A são maiores no cérebro, enquanto a expressão do H19 é maior nas membranas extra-embrionárias. Em nosso estudo, obtivemos duas gestações gemelares equinas derivadas da TNCS, que foram interrompidas com 40 e 60 dias de gestação, e comparados com gestações eqüinas únicas de idade similar. Diferenças no comprimento entre os embriões gêmeos foram observadas aos 40 (2.0 e 2.2 cm 10%) e aos 60 (6,5 e 8,5 cm 24%) dias de gestação. Somente o plexo coróide do quarto ventrículo apresentou-se mais desenvolvido nos fetos com maior comprimento. Ao analisarmos fetos muares clonados em diferentes idades gestacionais e compará-los com muares, nos períodos embrionário, fetal e adulto, não foi observada diferença no padrão de metilação do gene SNRPN. No entanto, na décima passagem das células iPSC o padrão de metilação alterou, em relação aos muares estudados e ao padrão observado nos fibroblastos. Ao analisarmos os fetos clonados nas diferentes idades gestacionais observou-se no cérebro menor expressão dos gene H19 e UBE3A, e maior expressão do gene SNRPN. Contudo, a expressão do gene Necdin variou entre as estruturas estudadas. Em conclusão, apesar dos gêmeos eqüinos provenientes de TNCS diferirem quanto ao tamanho, morfologicamente são iguais. Dentre as estruturas cerebrais o plexo coróide se apresentou mais desenvolvido nos fetos de maior comprimento. Os fetos muares clonados não apresentaram diferença no padrão de metilação do gene SNRPN. No entanto, as iPSCs apresentaram alteração no padrão de metilação deste gene na décima passagem. Embora os genes SNRPN, Necdin e UBE3A sejam expressos no cérebro, o SNRPN apresentou-se prevalente nessa estrutura / The nuclear transfer of somatic cells (SCNT) is being used to produce elite horses. However, during this procedure can occur drilling of the zona pellucida, leading occasionally to the section of the inner cell mass, and subsequent derivation of monozygotic twins. Besides being related changes in genomic imprinting process, leading to the development of diseases. With the discovery of the possibility to reprogram somatic cells to a pluripotent state (iPSCs), these cells have become widely used in neuroscience research. However, also occur epigenetic changes during this cellular reprogramming. Therefore, our hypothesis is that equine twins caused by equine ART could lead to developmental irregularities of the nervous system. The patterns of SNRPN methylation in the structures of cloned mule fetuses and in iPSCs are different from the patterns found in the analyzed mules. And the expression of SNRPN, Necdin and UBE3A genes are higher in the brain, while the higher expression of H19 gene occurs in the extraembryonic membranes. In our study we derived two equine twin SCNT pregnancies that were interrupted at 40 and 60 days of gestation and compared to singleton fetuses of similar age. Differences in lengths between twin embryos were observed at both 40 (2.0 and 2.2 cm 10%) and 60 (6.5 and 8.5 cm 24%) days of gestation. Only the choroid plexus in the fourth ventricle more developed in the twins with the greatest length. Analyzing mules cloned fetuses at different gestational ages, and compare them with mules at embryonic, fetal and adult period; there was no difference in the pattern of methylation in SNRPN gene. However, in the tenth passage of the iPSCs the methylation pattern was altered in relation to the studied mules and the pattern observed in fibroblasts. When the cloned fetuses at different gestational ages were analyzed, the brain presented lower expression of H19 and UBE3A genes, and higher expression of SNRPN gene. However, the expression of Necdin gene varied among the structures studied. In conclusion, despite the twin horses from SCNT differ in size, they are morphologically identical. Among the brain structures the choroid plexus performed more developed in the fetuses of greater length. Cloned mules fetuses showed no difference in the pattern of methylation SNRPN gene. However, iPSCs have changes in the pattern of methylation of this gene in the tenth passage. Although SNRPN, Necdin and Ube3A genes are expressed in the brain, SNRPN is prevalent in this structure
6

Controle epigenético do gene imprinted SNRPN durante o desenvolvimento e reprogramação nuclear em equídeos / Epigenetic control of the SNRPN imprinted gene during developmental and nuclear reprogramming in equids

Nathia Nathaly Rigoglio 15 March 2016 (has links)
A tranferência nuclear de células somáticas (TNCS) está sendo utilizada para produzir cavalos de elite. No entanto, durante este procedimento pode ocorrer a perfuração da zona pelúcida, levando, ocasionalmente, à secção da massa celular interna, e conseqüente derivação de gêmeos monozigóticos. Além de serem relatadas alterações no processo de imprinting genômico, que conduzem ao desenvolvimento de doenças. Com a descoberta da possibilidade de reprogramar as células somáticas a um estado de pluripotência (iPSCs), estas células passaram a ser muito utilizadas em pesquisas de neurociência. Contudo, também ocorrem modificações epigenéticas durante esta reprogramação celular. Portanto, nossas hipóteses são que os gêmeos eqüinos gerados pela TNCS podem levar às irregularidades no desenvolvimento do sistema nervoso. O padrão de metilação do SNRPN nas estruturas dos fetos muares clonados, e as células iPSCs são diferentes dos padrões encontrados nos muares analisados. A expressão dos genes SNRPN, Necdin e UBE3A são maiores no cérebro, enquanto a expressão do H19 é maior nas membranas extra-embrionárias. Em nosso estudo, obtivemos duas gestações gemelares equinas derivadas da TNCS, que foram interrompidas com 40 e 60 dias de gestação, e comparados com gestações eqüinas únicas de idade similar. Diferenças no comprimento entre os embriões gêmeos foram observadas aos 40 (2.0 e 2.2 cm 10%) e aos 60 (6,5 e 8,5 cm 24%) dias de gestação. Somente o plexo coróide do quarto ventrículo apresentou-se mais desenvolvido nos fetos com maior comprimento. Ao analisarmos fetos muares clonados em diferentes idades gestacionais e compará-los com muares, nos períodos embrionário, fetal e adulto, não foi observada diferença no padrão de metilação do gene SNRPN. No entanto, na décima passagem das células iPSC o padrão de metilação alterou, em relação aos muares estudados e ao padrão observado nos fibroblastos. Ao analisarmos os fetos clonados nas diferentes idades gestacionais observou-se no cérebro menor expressão dos gene H19 e UBE3A, e maior expressão do gene SNRPN. Contudo, a expressão do gene Necdin variou entre as estruturas estudadas. Em conclusão, apesar dos gêmeos eqüinos provenientes de TNCS diferirem quanto ao tamanho, morfologicamente são iguais. Dentre as estruturas cerebrais o plexo coróide se apresentou mais desenvolvido nos fetos de maior comprimento. Os fetos muares clonados não apresentaram diferença no padrão de metilação do gene SNRPN. No entanto, as iPSCs apresentaram alteração no padrão de metilação deste gene na décima passagem. Embora os genes SNRPN, Necdin e UBE3A sejam expressos no cérebro, o SNRPN apresentou-se prevalente nessa estrutura / The nuclear transfer of somatic cells (SCNT) is being used to produce elite horses. However, during this procedure can occur drilling of the zona pellucida, leading occasionally to the section of the inner cell mass, and subsequent derivation of monozygotic twins. Besides being related changes in genomic imprinting process, leading to the development of diseases. With the discovery of the possibility to reprogram somatic cells to a pluripotent state (iPSCs), these cells have become widely used in neuroscience research. However, also occur epigenetic changes during this cellular reprogramming. Therefore, our hypothesis is that equine twins caused by equine ART could lead to developmental irregularities of the nervous system. The patterns of SNRPN methylation in the structures of cloned mule fetuses and in iPSCs are different from the patterns found in the analyzed mules. And the expression of SNRPN, Necdin and UBE3A genes are higher in the brain, while the higher expression of H19 gene occurs in the extraembryonic membranes. In our study we derived two equine twin SCNT pregnancies that were interrupted at 40 and 60 days of gestation and compared to singleton fetuses of similar age. Differences in lengths between twin embryos were observed at both 40 (2.0 and 2.2 cm 10%) and 60 (6.5 and 8.5 cm 24%) days of gestation. Only the choroid plexus in the fourth ventricle more developed in the twins with the greatest length. Analyzing mules cloned fetuses at different gestational ages, and compare them with mules at embryonic, fetal and adult period; there was no difference in the pattern of methylation in SNRPN gene. However, in the tenth passage of the iPSCs the methylation pattern was altered in relation to the studied mules and the pattern observed in fibroblasts. When the cloned fetuses at different gestational ages were analyzed, the brain presented lower expression of H19 and UBE3A genes, and higher expression of SNRPN gene. However, the expression of Necdin gene varied among the structures studied. In conclusion, despite the twin horses from SCNT differ in size, they are morphologically identical. Among the brain structures the choroid plexus performed more developed in the fetuses of greater length. Cloned mules fetuses showed no difference in the pattern of methylation SNRPN gene. However, iPSCs have changes in the pattern of methylation of this gene in the tenth passage. Although SNRPN, Necdin and Ube3A genes are expressed in the brain, SNRPN is prevalent in this structure

Page generated in 0.1408 seconds