• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Démembrement génétique des déficiences intellectuelles et compréhension des bases physiopathologiques associées, à l'ère du séquençage à haut débit / Deciphering the molecular bases of intellectual disabilities and understanding of relevant pathophysiological mechanisms, in the era of high-throughput sequencing

Langouët, Maéva 03 December 2014 (has links)
La déficience intellectuelle (DI) est définie comme un dysfonctionnement intellectuel général inférieur à la moyenne, qui s'accompagne de limitations significatives du fonctionnement adaptatif (DSM-V). Il s'agit d'un handicap fréquent qui concerne près de 3% de la population générale. L'identification de l'étiologie d'une DI est une question primordiale car elle permet d'optimiser la prise en charge des patients sans risque de passer à côté d'une cause curable, et d'évaluer le risque de récidive dans la famille afin d'offrir un conseil génétique pour les grossesses à venir. Malgré les récents progrès, l'étiologie de la maladie reste inconnue dans près de 40% des cas. Le démembrement des causes génétiques et la compréhension des bases physiopathologiques des DI constituent donc un grand défi scientifique et médical. Par ailleurs, l'identification des gènes impliqués dans les DI et le décryptage des processus cellulaires sous-jacents à ces phénotypes sont une approche de choix pour étudier le développement et la plasticité cérébrale chez l'homme d'une part et entrevoir le développement de nouvelles stratégies thérapeutiques d'autre part. Le travail de thèse présenté dans ce manuscrit s'inscrit dans cette thématique de recherche et a porté sur l'analyse, par la méthode de Whole Exome Sequencing (WES), de cinq familles indépendantes dans lesquelles ségrège une forme syndromique de DI. La première partie détaille les résultats obtenus pour l'analyse de trois familles consanguines dans lesquelles ségrège une DI autosomique récessive. La seconde partie présente l'étude de deux familles indépendantes dont les enfants atteints présentent une clinique très semblable. Au total, ce mémoire décrit l'identification de i) deux gènes précédemment associés à la DI (WDR62 et AP4M1), ii) deux gènes candidats (RAD54B et HERC2), potentiels modificateurs des symptômes observés, puis iii) la définition d'un nouveau mode d'hérédité, et enfin iv) la caractérisation de deux nouveaux gènes impliqués dans la DI (TTI2 et NONO) suivie des études fonctionnelles des efiets des mutations sur les cellules de patients et l'analyse d'un modèle murin Nonogt. / Intellectual deficiency (ID) is characterized by a broad range of deficits in higher brain functions that result in significant limitations in adaptive and cognitive capacities required for competence in daily living, communication, social interaction and integration, self-direction, and work (DSM-V). ID affects approximately 3% of the population. Identifying ID causes is essential to improve patients' care services with no risk to miss a curable cause, but also to provide genetic counselling to the family for future pregnancies. Little is known about the biological bases of these conditions. Indeed, despite recent advances in cytogenetic and molecular genetics, the cause of the mental handicap remains unexplained in 40% of the cases. Understanding the molecular bases of these disorders is therefore an important medical challenge for the next years. Also, ID genes identification and analysis of the cellular mechanisms underlying these conditions should provide significant insight into the molecular and cellular pathways involved in cognition and may lead to new therapeutic trials aiming at improving the daily living of these patients and their families. The PhD work presented here report on the analysis, using Whole Exome Sequencing (WES), of five different families presenting with syndromic ID. The first part develops results from the analysis of three consanguineous families with an autosomal recessive form of ID. The second part presents the study of 2 unrelated male ID patients who presented the same clinical features. Overall, this work allowed the identification of i) two genes previously associated with ID (WDR62 and AP4M1), ii) two candidate genes (RAD54B and HERC2), potential modifiers of the phenotype, then iii) the definition of a novel hereditary mode, and finally iv) the characterization of two new genes of ID (TTI2 and NONO) followed by the functional analysis of mutations effects in patients' cells and the Nonogt mouse model.
2

Contribution du récepteur GPR55 à la synaptogenèse

Germain, Philippe 04 1900 (has links)
Les connections synaptiques entre les cellules nerveuses (appelées synapses) sont essentielles à l’établissement de l’architecture du système nerveux. La modification de ces synapses est un des mécanismes par lequel l’apprentissage et la mémoire fonctionnent. On sait depuis plusieurs années déjà que la consommation de cannabis exerce une profonde influence sur l’apprentissage et la mémoire, et que sa consommation chez la femme durant la grossesse ou l’allaitement peut causer des déficits cognitifs chez l’enfant qui perdureront à l’âge adulte. Pour le moment, on ne sait toujours pas si ces effets sont médiés par les récepteurs aux cannabinoïdes classiques (CB1 et CB2) ou par d’autres récepteurs tel le GPR55. Des études récentes du laboratoire du Pr. Bouchard ont démontré un rôle important du système endocannabinoïde dans le développement du système nerveux notamment par la présence du récepteur GPR55 et son implication dans la modulation du guidage et de la croissance des axones durant les périodes foetale et périnatale. Comme certaines molécules et mécanismes cellulaires impliqués dans ces processus peuvent aussi jouer un rôle dans la formation de synapses (synaptogenèse), l’objectif de la présente étude est de déterminer la contribution du GPR55 dans la formation de contacts synaptiques. À partir de cortex d’embryons de souris, nous avons cultivé puis traité des neurones corticaux soit avec un agoniste sélectif de GPR55 (O-1602) ou son antagoniste sélectif (ML-193), soit avec un phytocannabinoïde (cannabidiol) pendant 24 heures au 9e jour in vitro. En immunocytochimie, les neurones traités avec le ML-193 ont démontré une réduction significative du nombre de contacts synaptiques et une augmentation significative avec l’O-1602 et le cannabidiol. Ces changements anatomiques sont corrélés avec des modifications de l’expression des protéines synaptiques GluR1 et synaptophysine au niveau du cortex. En plus de fournir d’importantes informations sur le développement du système nerveux, les résultats de cette étude contribuent à l’amélioration de nos connaissances sur les anomalies du développement induites par la consommation périnatale de cannabis. / Functional connections between nerve cells (called synapses) are essential to establish the architecture of the nervous system. The modification of synapses is thought to be one of the mechanisms by which learning and memory occur. It has been known for decades that cannabis consumption has a profound influence on learning and memory, and that maternal marijuana smoking during perinatal period causes cognitive deficits that last in the adulthood of the offspring. For the moment, we do not know if these effects are mediated by the classic CB1 and CB2 cannabinoid receptors or by other receptors such as GPR55. Recent studies by Pr. Bouchard have demonstrated an important role for the endocannabinoid system in the development of the nervous system, including the presence of GPR55 and its involvement in axon growth and target innervation during the fetal and early postnatal periods. As certain molecules and cellular mechanisms involved in these processes may also regulate synapse formation (synaptogenesis), the objective of the present study is to determine the contribution of GPR55 in the formation of new synaptic contacts. Primary cortical neurons isolated from embryonic mice were cultivated and then treated either with a selective agonist of GPR55 (O-1602) or his selective antagonist (ML-193), or with a phytocannabinoid (cannabidiol) for 24h at the ninth day in vitro (DIV9). In immunocytochemistry, neurons treated with ML-193 have shown a decrease in synaptic density, while the treatment with O-1602 or cannabidiol increased it. These anatomical changes were correlated with changes in the expression of synaptic proteins GluR1 and synaptophysin. Results from this study provide important insight on the development of the nervous system and contribute to improving our knowledge on developmental abnormalities induced by perinatal cannabis use.
3

Les fondements neurophysiologiques de la latéralisation motrice : le paradigme des mouvements en miroir / Neurophysiological basis of motor lateralization : the mirror movements paradigm

Welniarz, Quentin 13 July 2016 (has links)
Le syndrome des mouvements en miroir congénitaux (MMC) est une maladie génétique caractérisée par l’existence de mouvements involontaires symétriques d’une main qui reproduisent à l’identique les mouvements volontaires de l’autre main. Deux structures sont impliquées dans la physiopathologie de cette maladie : le corps calleux (CC) et le faisceau corticospinal (FCS). Deux gènes ont été liés aux MMC à ce jour : DCC et RAD51. Tandis que DCC joue un rôle crucial dans le guidage des axones commissuraux, RAD51 intervient dans la réparation de l’ADN, et son rôle dans le développement du système moteur était inattendu.Chez la souris, nous avons étudié le rôle de RAD51 et DCC dans le développement du FCS et du CC, ainsi que l’implication de ces deux structures dans la latéralisation du contrôle moteur. Nous avons prouvé que DCC contrôle le guidage du FCS à la ligne médiane de façon indirecte. RAD51 intervient dans le développement du neocortex, mais son rôle précis dans le développement du système moteur demeure inconnu. Nous avons par ailleurs comparé un groupe de patients MMC à des volontaires sains afin d’étudier la latéralisation de l’activité corticale lors de la préparation motrice. L’activation et les interactions inter-hémisphériques des aires motrices sont anormales dès la préparation du mouvement chez les patients MMC. L’inhibition de l’aire motrice supplémentaire (AMS) chez les volontaires sains reproduit les défauts d’interactions inter-hémisphériques observés chez les patients. Ces résultats suggèrent que l’AMS est impliquée dans la préparation des mouvements latéralisés, potentiellement en modulant les interactions entre les deux hémisphères via le CC. / Mirror movements are involuntary symmetrical movements of one side of the body that mirror voluntary movements of the other side. Congenital mirror movements (CMM) is a rare genetic disorder transmitted in autosomal dominant manner, in which mirror movements are the only clinical abnormality. Two structures are involved in the physiopathology of CMM: the corpus callosum (CC) and the corticospinal tract (CST). The two main culprit genes identified so far are DCC and RAD51. While the role of DCC in commissural axons guidance during development is well known, RAD51 is involved in DNA repair, and its link with CMM was totally unexpected. In mice, we investigated the role of RAD51 and DCC in the development of the CC and CST, as well as the role of these two structures in motor lateralization. We showed that DCC controls CST midline crossing in an indirect manner. Our work clarified the role of RAD51 in neocortex development, but how RAD51 influences motor system development remains unknown. We compared a group of CMM patients with healthy volunteers to investigate the lateralization of cortical activity during movement preparation. We showed that activation of motor/premotor areas and interhemispheric interactions during movement preparation differed between the CMM patients and healthy volunteers. Transient inhibition of the supplementary motor area (SMA) in the healthy volunteers resulted in abnormal interhemispheric interactions during movement preparation, reminiscent of the situation observed in the patients. These results suggest the SMA is involved in lateralized movements preparation, potentially by modulating interhemispheric interactions via the CC.
4

Contribution du récepteur GPR55 dans la formation des contacts synaptiques

Lacomme, Lucile 08 1900 (has links)
La synaptogenèse est un processus biologique aboutissant à la mise en place d’un réseau de connexions neuronales, par la genèse de synapses. La mise en place de ce réseau de connexions est essentielle au développement du système nerveux central (SNC) et de ses fonctions. Tout comme les autres étapes du développement du SNC, la synaptogenèse est régulée par une multitude de signaux cellulaires, et le système endocannabinoïde en fait partie. Les dérivés du cannabis tel que le Δ-9-tétrahydrocannabinol (THC) et le cannabidiol (CBD) sont capables de traverser la barrière placentaire et de se retrouver dans le lait maternel. Par leur interaction avec le SNC, entre autres, ces phytocannabinoïdes sont capables d’influencer son développement. Le récepteur couplé à une protéine G 55 (GPR55) est catégorisé comme récepteur atypique du système endocannabinoïde, et il est capable d’être antagonisé par le CBD. Il a été prouvé par de précédentes études qu’il est lui aussi impliqué dans le développement du SNC, notamment dans le guidage et la croissance des axones durant les périodes fœtale et périnatale. Dans la littérature, il est souvent rapporté que les signaux impliqués dans le guidage axonal le sont aussi dans la synaptogenèse. C’est pourquoi le présent mémoire vise à examiner le rôle du récepteur GPR55 et l’effet de sa modulation par le CBD dans la formation de contacts synaptiques. Le modèle utilisé pour cette étude est la culture de neurones corticaux issus d’embryons de souris de génotypes gpr55+/+ et gpr55-/-. Pour comprendre le rôle physiologique de GPR55 dans la synaptogenèse nous avons étudié l’effet de la délétion du récepteur GPR55 à deux temps, Day In Vitro (DIV) 9-10 au début de la synaptogenèse, et à DIV14-15 un temps plus avancé. Ensuite pour comprendre comment le CBD est capable d’influencer la formation de contacts synaptiques de manière dépendante ou non de GPR55, les cultures de neurones corticaux de chaque génotype ont été exposées à DIV9 pour 24h à différentes concentrations du CBD (0,3uM ou 0,6uM ou 1uM). Les effets sur la formation de contacts synaptiques ont été étudiés en immunocytochimie, en immunobuvardage et en électrophysiologie de type patch clamp. Les résultats montrent que la délétion de GPR55 entraine à DIV14-15 une augmentation de la densité des contacts synaptiques, mais une réduction de leur aire et de l’expression de la synaptophysine, en affectant l’activité synaptique. L’exposition au CBD 0,6uM et 1uM entrainent de manière dépendante ou partiellement dépendante à GPR55, une augmentation de la densité des contacts synaptiques sans affecter leur aire, l’expression de protéines synaptiques ainsi que l’activité synaptique. La fréquence de décharge des neurones est diminuée de manière dépendante de GPR55 après l’exposition au CBD 1uM. Ces résultats suggèrent que GPR55 pourrait être un signal important pour l’arrêt de la formation de nouvelles synapses et un signal d’induction pour la maturation des synapses existantes. / Synaptogenesis is a biological process that leads to the establishment of a network of neuronal connections through the genesis of synapses. The formation of this network of connections is essential for the development of the central nervous system (CNS) and its functions. Like other stages of CNS development, synaptogenesis is regulated by multiple cellular signals, and the endocannabinoid system is part of it. Cannabis derivatives such as Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) can cross the placental barrier and be present in breast milk. Through their interaction with the endocannabinoid system, among others, these phytocannabinoids can influence CNS development. The G protein-coupled receptor 55 (GPR55) is categorized as an atypical receptor of the endocannabinoid system, and it can be antagonized by CBD. Previous studies have shown that GPR55 is also involved in CNS development, particularly in the guidance and growth of axons during fetal and perinatal periods. It is often reported in the literature that the signals involved in axonal guidance are also involved in synaptogenesis. Therefore, this study investigates the role of the GPR55 receptor and the effect of its modulation by CBD in the formation of synaptic contacts. The model used for this study consists of cortical neuron cultures from mouse embryos gpr55+/+ and gpr55-/- . To understand the physiological role of GPR55 in synaptogenesis, we studied the effect of gpr55 deletion at two-time points: Day In Vitro (DIV) 9- 10 at the beginning of synaptogenesis, and DIV14-15 at a later time point. Then, to understand how CBD can influence the formation of synaptic contacts, whether dependent or independent of GPR55, cortical neuron cultures of each genotype were exposed to different concentrations of CBD (0.3µM or 0.6µM or 1µM) at DIV9 for 24 hours. The effects on the formation of synaptic contacts were studied through immunocytochemistry, western blot, and patch clamp electrophysiology. The results show that gpr55 deletion leads to an increase in synaptic contact density at DIV14-15 but a reduction in their area and synaptophysin expression, by affecting synaptic activity. Exposure to 0.6µM and 1µM CBD results in a GPR55-dependent or partially dependent increase in synaptic contact density without affecting their area, expression of synaptic proteins, and synaptic activity. The firing frequency of neurons is decreased in a GPR55- dependent manner after exposure to 1µM CBD. These results suggest that GPR55 could be an important signal for stopping the formation of new synapses and an induction signal for the maturation of existing synapses.

Page generated in 0.0952 seconds