Spelling suggestions: "subject:"centrifugal compressor"" "subject:"centrifugal kompressor""
21 |
Návrh kompresoru turbodmychadla / Compressor Turbocharger DesignDomanský, David January 2011 (has links)
The master's thesis deals with compressor turbochargers used for supercharging of combustion engines. The aim of the thesis is feasibility study of compressor surge limit simulation. First of all the principle and purpose of supercharged combustion engines is described and the compressors' types using for supercharging are mentioned as well. The main part of the thesis is focused on flow instabilities and their influence on compressor operating zone. There are mentioned some possibilities of operating zone extension. The practical part comprises the simplified computation of a one stage of centrifugal compressor and flow analysis by means of CFD simulation.
|
22 |
Experimental and Numerical Investigation of Tip Clearance Effects in a High-Speed Centrifugal CompressorMatthew Francis Fuehne (9159605) 23 July 2020 (has links)
The objective of this research is to investigate the effects of tip clearance on the stage and component performance in a high-speed centrifugal compressor. The experimental data were compared against results from a numerical model to assess the ability of the numerical simulation to predict the effects of tip clearance. Experimental data were collected at Purdue University on the Single Stage Centrifugal Compressor (SSCC), a high-speed, high-pressure ratio test compressor sponsored by Honeywell Aerospace. Numerical simulations were completed using the ANSYS CFX software suite and part of the research computing clusters located at Purdue University.<div><br></div><div>Two tip clearances were tested, the nominal tip clearance and a tip clearance that is 66% larger than the nominal clearance, at speeds from 60% to 100% corrected speed. To compare data points with different tip clearances, various parameters were evaluated, and one was chosen. The value of TPR/inlet corrected mass flow rate best represented similar loading conditions, and thus similar incidences, for each tip clearance and was chosen as the best method for comparing similar data points taken with different clearances. Stage and component performance were focused on the sensitivity of each performance parameter to the changing of the tip clearance. The stage total pressure ratio and stage efficiency showed moderate sensitivity while the stage work factor showed much lower sensitivity. The impeller is more sensitive to changing tip clearances than the stage is, showing greater changes when comparing data from each tip clearance. The diffuser was on the same order of sensitivity as the impeller, with marginally higher sensitivities for some parameters. It was found that by the typical performance metrics, the diffuser performs worse at the nominal clearance than at the larger clearance. Upon further investigation though, the impeller is providing a higher static pressure and therefore, more diffusion, at the nominal clearance so the diffuser must perform less diffusion during nominal clearance operation.<br></div><div><br></div><div>To assess the validity of a prediction of the performance and sensitivity of the stage and components to the tip clearance, a numerical model was developed and validated. The numerical model was able to reasonably predict the stage performance with better comparisons of performance in the impeller and worse in the diffuser. The instrumentation in the experiment was replicated in the software to calculate performance the same way it is calculated experimentally so that the results would be comparable. While the performance of the stage and components was lacking in some areas, the trends predicted were similar to those calculated from the experimental data. As with the performance, the trends in the impeller matched very well between the experiment and the numerical simulation. The trends in stage and diffuser performance were predicted more accurately than the stage and diffuser performance maps and were able to capture the magnitude of the change in performance caused by changing the tip clearance. <br></div>
|
23 |
Multi-fidelity Design and Analysis of Single Hub Multi-rotor High Pressure Centrifugal CompressorMuppana, Sai January 2018 (has links)
No description available.
|
24 |
Compressor CFD simulation method development : A CFD studyBjörk, Johan January 2018 (has links)
This master thesis project consisted of three parts that all were performed through CFD simulations with the purpose to develop Scania's methods in the subject of CFD. All parts included simulations on Scania's SC92T70 centrifugal compressor. Part one consisted of performing a mesh study for the purpose of reliability, to investigate the convergence of different parameters by refining the boundary layer. The method used is an inflation option called First layer thickness. Five different meshes were generated where the Richardson extrapolation method was used to examine the parameters between the mesh renements. From the result from the examined parameters, an approximate relative error could be calculated to be less than 0.52 %, and a numerical uncertainty of less than 0.35 %, between Mesh3 and Mesh4. In addition to that, Mesh3 had a simulation time of one hour less than for Mesh4. These results motivated the use of mesh3 to be refined enough for further work in this thesis project. This mesh ended at 37, 915, 257 number of elements. The second part consisted of performing steady state CFD simulations, to examine different parameters in order to find indications of the phenomena surge. Here, experimental data was used as reliance to perform CFD simulations on the compressor. Design points from experimental data was used, that ranged from low mass flow rates where surge arises, to high mass flow rates where another phenomena called choke occur. Except for the design points taken from experimental data, a few extra design points where included at low mass flow rates (in the region of surge). The goal was that the analysis of the different parameters would generate fluctuations on the result for the design points in surge region. Four different rotational speeds on the compressor were examined, 56k, 69k, 87k and 110k revolutions per minute. A total of 140 different parameters were examined, where 10 of these indicated on surge. All of these parameters that indicated on surge where found in regions of vicinity to the compressor wheel, which are the regions subjected to the phenomena.The parameters indicating on surge where mass flow, pressure coefficient, static pressure and temperature. Indications where found at the wheel inlet, ported shroud, and wheel outlet interfaces. The indications were only found for the two lower rotational speeds of the compressor wheel. To capture the behaviour on higher rotational speeds, more design points in the region of surge are needed, or transient simulations. Part three of the thesis project consisted of investigating the methodology of performing a Conjugate Heat Transfer model (CHT) with the CFD code CFX. This part has not been performed by Scania before, so a big part of the problem was to investigate if it actually was achievable. The goal was to use this model to calculate the heat transfer between fluid and solid parts, as well as between the solid parts and the ambient. One question Scania wanted to answer was if the CHT model could generate aerodynamic performance that corresponds to Scania's traditional adiabatic model, as well as to experimental data of the compressor. In this part, both solid and fluid domains were included in the geometryto calculate heat transport, in contrast to the traditional adiabatic model that only uses the fluid domains. Because of that, a big part of the work consisted of defining all interfaces connecting together surfaces between all domains. This is needed to model heat transport between the domains. In the set up part in CFX, the CHT model differed a lot from the traditional adiabatic model in that way that the outer walls was not set up as adiabatic anymore. In the CHT model, instead heat transfer is allowed between the outer walls of the fluids and the solids. From the result simulations, one could see that the CHT model was able to compute the heat transfer between fluids and solids. It also managed to export thermal data such as heat flux and wall heat transfer coefficient to be used for mechanical analysis, which is an important part in Scania's work. From the analysis of aerodynamic performance, a conclusion was drawn that the CHT model was able to compute efficiency and pressure ratio that followed the behaviour ofthe traditional adiabatic model as well as experimental data. However, for lowermass flows, the CHT model started to underpredict which could be explained by the geometrical differences between the CHT and adiabatic model. By analysis of temperature, one could see quantitative differences compared to the traditional adiabatic model. For other parameters (static and total pressure), there were no experimental data to be used for comparison. Because of that, an important part in future work of this CHT method development is to perform more experimental test for CFD data to be compared against. Another important part to compare the models is to have an identical geometry. Without an identical geometry, deviations in result will occur that depends on geometry.
|
25 |
Simulation of Surge in Turbocharger Compression SystemsDehner, Richard D. 28 July 2011 (has links)
No description available.
|
26 |
Prediction of surge in centrifugal compressors using steady-state CFDMalmsten, Jakob January 2024 (has links)
The centrifugal compressor is a central part of the turbocharger on a truck. It compresses the air which allows for a larger intake of gas into the cylinders. This raises the amount of oxygen available for combustion which increases the efficiency of the engine. However, the operating range of a compressor is limited. If the mass flow through the compressor gets too low, it can start to surge. The surging phenomenon for centrifugal compressors is characterized by axial oscillations in the mass flow which can cause a backflow of air through the compressor. This can result in structural damage on the compressor. It is therefore important to understand under which conditions surge occurs. When it comes to the development and design of compressors, Computational Fluid Dynamics (CFD) is a valuable tool. It enables us to simulate the performance of compressors without the costly process of building a prototype and testing it. Even simpler steady-state simulations can give valuable insight on the performance. However, since surge is a dynamic phenomenon, it is not readily accessible through one of these steady-state simulations, where the sought solution is a flow field constant in time. The aim of this thesis is to capture the surge phenomenon in a steady-state simulation and develop a method for predicting when the compressor surges. This is done by looking at oscillations in the solver for the total pressure at a cross-sectional plane upstream of the compressor wheel. We find that the amplitude of these oscillations increases when the compressor is approaching surge. From this we define a surge criterion and fit the model parameters to an experimentally determined surge line. We then predict the location of the surge line for the same compressor, now equipped with a ported shroud (a geometry feature with the intention of mitigating surge). With this ported shroud, we expect the compressor’s operating range to be widened, which is also what the model predicts. However, this prediction needs to be compared with real data in order to see if the method accurately captures the location of the surge line.
|
27 |
Genetic optimization of turbomachinery components using the volute of a transonic centrifugal compressor as a case study / Genetische Optimierung von Strömungsmaschinen am Beispiel des Spiralgehäuses eines transsonischen RadialverdichtersHeinrich, Martin 20 December 2016 (has links) (PDF)
One elementary part of a centrifugal compressor is the volute, which is located downstream the impeller. Its purpose is to collect the flow and increase the static pressure by converting kinetic energy into potential energy. Despite its significant effect onto the design point and operating range of the compressor, the number of publications regarding this component is quite small. Therefore, a numerical optimization of the volute housing is performed in order to identify important geometric parameters and find an optimal volute geometry. For this purpose, a new density-based CFD solver for all Mach numbers is developed as well as an automated geometry generation tool for the volute housing.
The results show, that a volute with an inlet eccentricity of 0.9 and a slightly lower radial volute channel offers the best compressor efficiency. Moreover, the actual cross-sectional shape of the volute has only a minor influence onto the performance. As a result, the isentropic efficiency could be improved by up to 2 % compared to the reference compressor model, in particular at high off-design flow rates. These results are a novelty in the scientific community and help to design more efficient compressors. / Das Spiralgehäuse eines Radialverdichters wird im Gegensatz zum Laufrad kaum in wissenschaftlichen Arbeiten untersucht. Um wichtige Geometrieparameter und Einflussfaktoren dieses Bauteils zu identifizieren, wird daher eine Optimierung mittels genetischer Algorithmen durchgeführt. Dazu wird zunächst ein dichte-basierter CFD-Löser entwickelt und validiert, um die komplexe Strömung in einem Radialverdichter mit hoher Genauigkeit simulieren zu können. Darauf aufbauend wird das Spiralgehäuse parametrisiert und ein Programm entwickelt, welches die komplexe Geometrie automatisiert erstellt.
Durch die neuartige Kombination von numerischer Optimierung, automatisierter Geometrieerstellung und CFD-Simulation des Spiralgehäuses können erstmals Aussagen zur optimalen Geometrie sowie über Verlusteffekte für eine Vielzahl an Geomtrievarianten
getroffen werden. Mit Hilfe dieses Wissens können sparsamere und effizientere Radialkompressoren für viele Bereiche des Maschinenbaus entwickelt werden.
|
28 |
Zvýšení stability chodu odstředivého kompresoru / Extension of Centrifugal Compressor Operational StabilityRůžička, Miroslav Unknown Date (has links)
Centrifugal compressors with high pressure ratio are widely used in small aircraft turbine engines and turbocharges. At high rotational speeds they have narrow stable operating region and commonly used impellers with back swept blades are not able to ensure requested stability. In order to achieve wider stable operating region, some other anti-surge measures can be used, such as an Internal Recirculation Channel (IRC) located in compressor impeller inlet. This thesis deals with an investigation of IRC influence on centrifugal compressor operational parameters. As a first, the various recirculation channel geometry was studied by using of CFD analysis on simplified computational models. Those geometry, which indicated best results in terms of mass flow and looses in channel were used for testing on a model test device. Subsequently the same geometry was tested on real centrifugal compressor in experimental turbine engine to verify influence of IRC on compressor performance map – pressure ratio and efficiency. Simultaneously the CFD analyses of IRC with a 3D model of compressor impeller were performed and results compared with those, gained from measurement on model and compressor. In addition the measurement of flow field downstream the recirculation channel outlet slot with using of 3-hole pressure probe was performed and compared with flow velocity profiles evaluated from numerical simulations.
|
29 |
An Accelerated Aerodynamic Optimization Approach For A Small Turbojet Engine Centrifugal CompressorCeylanoglu, Arda 01 December 2009 (has links) (PDF)
Centrifugal compressors are widely used in propulsion technology. As an important part of turbo-engines, centrifugal compressors increase the pressure of the air and let the pressurized air flow into the combustion chamber. The developed pressure and the flow characteristics mainly affect the thrust generated by the engine.
The design of centrifugal compressors is a challenging and time consuming process including several tests, computational fluid dynamics (CFD) analyses and optimization studies. In this study, a methodology on the geometry optimization and CFD analyses of the centrifugal compressor of an existing small turbojet engine are introduced as increased pressure ratio being the objective. The purpose is to optimize the impeller geometry of a centrifugal compressor such that the pressure ratio at the maximum speed of the engine is maximized. The methodology introduced provides a guidance on the geometry optimization of centrifugal impellers supported with CFD analysis outputs.
The original geometry of the centrifugal compressor is obtained by means of optical scanning. Then, the parametric model of the 3-D geometry is created by using a CAD software. A design of experiments (DOE) procedure is applied through geometrical parameters in order to decrease the computation effort and guide through the optimization process. All the designs gathered through DOE study are modelled in the CAD software and meshed for CFD analyses. CFD analyses are carried out to investigate the resulting pressure ratio and flow characteristics.
The results of the CFD studies are used within the Artificial Neural Network methodology to create a fit between geometric parameters (inputs) and the pressure ratio (output). Then, the resulting fit is used in the optimization study and a centrifugal compressor with higher pressure ratio is obtained by following a single objective optimization process supported by design of experiments methodology.
|
30 |
Étude des approches de modélisation de la turbulence pour la simulation numérique d’un compresseur centrifuge à fort taux de pression / Study of turbulence modelling for the numerical simulation of a high pressure centrifugal compressorLéonard, Thomas 24 September 2014 (has links)
Cette étude a pour objectif d’étudier différentes approches de modélisation de la turbulence sur un compresseur centrifuge industriel à fort taux de pression afin d’essayer d’élargir notre compréhension des différents phénomènes physiques mis en jeu et leur interaction avec la turbulence. D’abord, la sensibilité au maillage et au modèle turbulence est évalué sur des calculs RANS. Une analyse de simulations LES est ensuite effectuée. En particulier, une étude de l’effet de la turbulence sur l’écoulement et une comparaison aux résultats RANS et expérimentaux est réalisée. Enfin, deux approches hybrides DES sont étudiées afin d’exposer les problèmes rencontrés par ces modèles sur cette configuration. Il en résulte une évaluation des différentes méthodes et de leur applicabilité future dans un contexte industriel. / This study aims to assess the abilities of existing numerical simulation methods to predict the complex physical phenomena occurring in an industrial centrifugal compressor and especialy the effect of turbulence on the different flow features. RANS simulations are first performed using various turbulence model, then LES simulations and finally, two simulations using RANS/LES hybrid models of DES type are carried out. The whole compressor operating range is simulated using RANS, but because of LES and DES high computational costs, attention is focussed on the nominal operating point. Particular care is devoted to determine the impact of grid refinement on the simulation results. To this end, simulations are performed on three grids, respectively composed of over 8, 26 and 165 million cells. Even though the grids used do not fulfill the mesh refinement criteria recommended in the litterature for an accurate wall-resolved LES simulation, the simulation performed on the denser grid provides interesting conclusions on the turbulence generation and its interaction with the mean flow.The hybrid DES approches used involve a shield function to prevent the boundary layers to be computed in LES. However, this function is found to be unsuited to this centrifugal compressor flow. Indeed, the RANS and LES regions are not correctly located and most of the tip leakage flow is resolved using a RANS approach, preventing the development of turbulence.This work allowed us to evalute the various approches and highlight some of the problems and advantages of each for the simulation of this centrifugal compressor.
|
Page generated in 0.0893 seconds