Spelling suggestions: "subject:"ceramic materials"" "subject:"keramic materials""
241 |
Developent of a Phospholipid Encapsulation Process for Quantum Dots to Be Used in Biologic ApplicationsGrimes, Logan 01 June 2014 (has links) (PDF)
The American Cancer Society predicts that 1,665,540 people will be diagnosed with cancer, and 585,720 people will die from cancer in 2014. One of the most common types of cancer in the United States is skin cancer. Melanoma alone is predicted to account for 10,000 of the cancer related deaths in 2014. As a highly mobile and aggressive form of cancer, melanoma is difficult to fight once it has metastasized through the body. Early detection in such varieties of cancer is critical in improving survival rates in afflicted patients. Present methods of detection rely on visual examination of suspicious regions of tissue via various forms of biopsies. Accurate assessment of cancerous cells via this method are subjective, and often unreliable in the early stages of cancer formation when only few cancer cells are forming. With fewer cancer cells, it is less likely that a cancer cell will appear in a biopsied tissue. This leads to a lower detection rate, even when cancer is present. This lack of detection when cancer is in fact present is referred to as a false negative. False negatives can have a highly detrimental effect on treating the cancer as soon as possible. More accurate methods of detecting cancer in early stages, in a nonsubjective form would alleviate these problems. A proposed alternative to visual examination of biopsied legions is to utilize fluorescent nanocrystalline biomarker constructs to directly attach to the abnormal markers found on cancerous tissues.
Quantum dots (QDs) are hydrophobic nanoscale crystals composed of semiconducting materials which fluoresce when exposed to specific wavelengths of radiation, most commonly in the form of an ultraviolet light source. The QD constructs generated were composed of cadmium-selenium (CdSe) cores encapsulated with zinc-sulfide (ZnS) shells. These QDs were then encapsulated with phospholipids in an effort to create a hydrophilic particle which could interact with polar fluids as found within the human body. The goal of this thesis is to develop a method for the solubilization, encapsulation, and initial functionalization of CdSe/ZnS QDs. The first stage of this thesis focused on the generation of CdSe/ZnS QDs and the fluorescence differences between unshelled and shelled QDs. The second stage focused on utilizing the shelled QDs to generate hydrophilic constructs by utilizing phospholipids to bind with the QDs. Analysis via spectroscopy was performed in an effort to characterize the difference in QDs both prior to and after the encapsulation process. The method generated provides insight on fluorescence trends and the encapsulation of QDs in polar substances. Future research focusing on the repeatability of the process, introducing the QD constructs to a biological material, and eventual interaction with cancer cells are the next steps in generating a new technique to target and reveal skin cancer cells in the earliest possible stages without using a biopsy.
|
242 |
Desarrollo de materiales cerámicos base circona sinterizados mediante técnicas rápidas no convencionalesGuillén Pineda, René Miguel 17 January 2022 (has links)
[ES] Los avances tecnológicos se encuentran, en algunas ocasiones, limitados debido a la imposibilidad de combinar las excelentes prestaciones de los materiales conocidos con algunas funcionalidades críticas necesarias para desarrollar nuevas aplicaciones tecnológicas. Estos nuevos materiales con un diseño a la carta resultan extremadamente interesantes ya que permiten combinar propiedades y funcionalidades actualmente inalcanzables. La circona, u oxido de zirconio (ZrO2), es un sólido cristalino blanco con enlaces iónicos altamente estables que es principalmente obtenido en forma de polvo para aplicaciones tecnológicas. Debido a sus propiedades física y químicas, la circona es un material cerámico que posee una serie de características excepcionales, que incluyen una dureza, tenacidad y fractura relativamente altas en comparación con otros materiales cerámicos, bajo coeficiente de fricción y alto punto de fusión. Además, es un material relativamente no reactivo cuando se expone a ambientes húmedos y corrosivos en comparación con otros materiales como metales y polímeros, con buena resistencia a altas temperaturas y abrasión. Todas estas propiedades posicionan a la circona como un material muy versátil con un amplio espectro de aplicaciones que abarca intercambiadores de calor, celdas de combustible, componentes de turbinas para sistemas aeronáuticos y generación de electricidad, así como para medicina, odontología y otras aplicaciones. El propósito de esta tesis doctoral es la obtención de materiales base circona que puedan ser empleados en la fabricación de nuevos composites con funcionalidades a la carta en sectores tecnológicos como el transporte, energía, medicina, etc. Para ello se utilizarán técnicas de sinterización no-convencionales: Microondas (MW) y Spark Plasma Sintering (SPS). Para este trabajo se plantea el estudio de distintos composites base circona: circona reforzada con óxido de niobio (Nb2O5), Titania (TiO2) y composites de circona reforzados con manganita de lantano dopada con estroncio (LSM). El resultado final de esta investigación permitirá determinar si las técnicas rápidas de sinterización no-convencional, permiten mejoran las propiedades mecánicas, eléctricas y magnéticas de los materiales obtenidos en comparación con la sinterización por métodos convencionales. / [CA] Els avenços tecnològics són, en algunes ocasions, limitats per la impossibilitat de combinar l'excel·lent comportament dels materials coneguts amb algunes funcionalitats crítiques necessàries per desenvolupar noves aplicacions tecnològiques. Aquests nous materials amb disseny a la carta resulten summament interessants ja que permeten combinar propietats i funcionalitats actualment inabastables. La circonia, o òxid de zirconi (ZrO2), és un sòlid cristal·lí blanc amb enllaços iònics altament estables que s'obté principalment en forma de pols per a aplicacions tecnològiques. A causa de les seves propietats físiques i químiques, la zircònia és un material ceràmic que posseeix una sèrie de característiques excepcionals, que inclouen duresa, tenacitat i fractura relativament altes en comparació amb altres materials ceràmics, baix coeficient de fricció i alt punt de fusió. A més, és un material relativament no reactiu quan s'exposa a ambients humits i corrosius en comparació amb altres materials com metalls i polímers, amb bona resistència a altes temperatures i abrasió. Totes aquestes propietats posicionen a la zircònia com un material molt versàtil amb un ampli espectre d'aplicacions que inclou intercanviadors de calor, piles de combustible, components de turbines per a sistemes aeronàutics i generació d'electricitat, així com per a medicina, odontologia i altres aplicacions. L'objectiu d'aquesta tesi doctoral és l'obtenció de materials base de zircònia que puguin ser utilitzats en la fabricació de nous compòsits amb funcionalitats sota demanda en sectors tecnològics com transport, energia, medicina, etc. Per a això, s'utilitzaran tècniques de sinterització no convencionals utilitzat: microones (MW) i sinterització per plasma d'espurna (SPS) Per a aquest treball es proposa l'estudi de diferents composites a força de zircònia: zircònia reforçada amb òxid de niobi (Nb2O5), titanat (TiO2) i composites de zircònia reforçats amb manganita de lantani dopat amb estronci (LSM). El resultat final d'aquesta investigació permetrà determinar si les tècniques de sinterització ràpida no convencional permeten millorar les propietats mecàniques, elèctriques i magnètiques dels materials obtinguts en comparació amb la sinterització per mètodes convencionals. / [EN] Technological advances are, on some occasions, limited due to the impossibility of combining the excellent performance of known materials with some critical functionalities necessary to develop new technological applications. These new materials of great design are extremely interesting since they allow combining properties and functionalities currently unattainable. Zirconia, or zirconium oxide (ZrO2), is a white crystalline solid with highly stable ionic bonds that is mainly obtained in powder form for technological applications. Due to its physical and chemical properties, zirconia is a ceramic material that possesses several exceptional characteristics, including relatively high hardness, toughness and fracture compared to other ceramic materials, low coefficient of friction, and high melting point. Furthermore, it is a relatively non-reactive material when exposed to humid and corrosive environments compared to other materials such as metals and polymers, with good resistance to high temperatures and abrasion. All these properties position zirconia as a very versatile material with a wide spectrum of applications that includes heat exchangers, fuel cells, turbine components for aeronautical systems and electricity generation, as well as for medicine, dentistry, and other applications. The purpose of this doctoral thesis is to obtain zirconia base materials that can be used in the manufacture of new composites with on-demand functionalities in technological sectors such as transport, energy, medicine, etc. For this, non-conventional sintering techniques will be used: Microwaves (MW) and Spark Plasma Sintering (SPS) For this work, the study of different zirconia-based composites is proposed: zirconia reinforced with niobium oxide (Nb2O5), titania (TiO2) and zirconia composites reinforced with strontium-doped lanthanum manganite (LSM). The result of this research will make it possible to determine whether rapid non-conventional sintering techniques allow the mechanical, electrical, and magnetic properties of the materials obtained to be improved compared to sintering by conventional methods. / El autor agradece a la Generalitat Valenciana por la ayuda económica recibida para la
beca del programa Santiago Grisolía (GRISOLIAP/2018/168) / Guillén Pineda, RM. (2021). Desarrollo de materiales cerámicos base circona sinterizados mediante técnicas rápidas no convencionales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/180231
|
Page generated in 0.0884 seconds