• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 18
  • 11
  • 9
  • 8
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 192
  • 192
  • 43
  • 30
  • 22
  • 17
  • 16
  • 16
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Neuroprotective effects of granulocyte-colony stimulating factor in a mice stroke model

Chan, Chu-fung., 陳柱峰. January 2007 (has links)
published_or_final_version / Medicine / Master / Master of Philosophy
32

NMR Characterization of Changes in the Apparent Diffusion Coefficient of Water Following Transient Cerebral Ischemia

Silva, Matthew S. 27 March 2002 (has links)
Magnetic resonance imaging (MRI) is a valuable research and clinical imaging modality for the non-invasive detection and characterization of cerebral ischemia. Specifically, diffusion-weighted imaging (DWI), which derives image contrast based on the diffusion of endogenous water molecules, is sensitive to cerebral ischemia within minutes of the onset of stroke. In combination with perfusion-weighted imaging (PWI) and T2-weighted imaging (T2WI), DWI can be used to characterize the temporal and spatial evolution of cerebral ischemia. The primary role of this dissertation is to outline several studies that investigate DWI, PWI, and T2WI changes in a rat stroke model of transient cerebral ischemia. Secondarily, this dissertation will introduce the method and results of an experiment designed to elucidate the relative roles of the intracellular (IC) or extracellular (EC) spaces to the water diffusion coefficient changes that occur as a result of cerebral ischemia. The use of MRI to detect cerebral ischemia is well established; however, the ability to distinguish between reversibly and irreversibly damaged tissues is limited. It has been shown in temporary focal ischemia models that the DWI abnormality (manifested as an image hyperintensity in the DWI) can be resolved if reperfusion is performed soon after the onset of the stroke. Initial studies suggested that the renormalization of water diffusion was associated with permanent restoration of cellular function (i.e., infarction was prevented). However, subsequent studies demonstrated that the disappearance of the acute ischemic lesion following reperfusion is not necessarily permanent and is related to the duration of the transient insult. Following short occlusions [e.g., 10 minutes in a rat middle cerebral artery occlusion (MCAO) model], there is complete tissue renormalization and restoration of normal neurological function. In contrast, following long periods of occlusion (e.g., 90 minutes), there are areas of the brain that do not recover and progress to infarction without delay. Intermediate durations of occlusion (e.g., 30 minutes) exhibit complete renormalization in all regions of ischemia; however, following several hours there is a gradual, secondary decline of the water diffusion coefficient values within the regions initially defined as abnormal. In this dissertation, the significant temporal and spatial heterogeneity in the secondary diffusion changes will be described and evaluated. Ultimately, MR techniques may provide valuable information regarding the response of tissue to transient ischemia as well as potential avenues for therapeutic intervention, which would have major clinical benefit. The significant changes in the apparent diffusion coefficient (ADC) of water that occur in ischemic brain are still not well understood. The leading hypothesis suggests that cellular swelling associated with the failure of the ionic gradient across the cell membrane results in an increase in EC tortuosity of the diffusion paths. Another theory suggests that the influx of fast-diffusing EC water, that occurs during cellular swelling, increases the proportion of water in the IC space, which is more restricted and viscous than the EC space. The final experiment presented herein demonstrates that significant cellular swelling remains in the regions of renormalized of ischemic ADC values that occur following reperfusion in transient ischemia. In short, the changes in the ADC values are not only the result of cellular swelling. Since conventional MR data contains the combined signals from the IC and EC spaces, it is difficult to determine the separate roles of these two compartments to the overall changes in water ADC. First, using a yeast-cell model, a method for separating the NMR signals is introduced. This method utilizes differences in the compartmental relaxation properties to isolate the MR signals from IC and EC spaces, and then secondarily the diffusion coefficients can be calculated. Using a modified version of this method, the experiment was performed in normal and ischemic rat brain. Intracerebroventricular (ICV) infusion of an MR contrast reagent (CR) was used to isolate IC T1, T2, and ADC values in vivo in normal and middle cerebral artery occluded (MCAO) rats using volume-localized, diffusion-weighted inversion-recovery spin-echo (DW-IRSE) spectroscopy and diffusion-weighted echo-planar imaging (DW-EPI). The presence of the EC contrast reagent (CR) selectively enhances the relaxation of water in the EC space and allows the IC and EC signal contributions to be separated based on T1-relaxation time differences between the two compartments. The results presented in this dissertation suggest that the IC ADC value is the major determinant of the overall ADC value measured in the normal rat brain. Further, the data suggests that the ADC decline experienced during acute ischemia is dictated largely by changes in the IC ADC, possibly due to failure of energy-dependent IC microcirculation (cytoplasmic streaming).
33

Inhibitory synpatic transmission in striatal neurons after transient cerebral ischemia

Li, Yan. January 2009 (has links)
Thesis (Ph.D.)--Indiana University, 2009. / Title from screen (viewed on December 1, 2009). Department of Anatomy and Cell Biology, Indiana University-Purdue University Indianapolis (IUPUI). Advisor(s): Zao C. Xu, Feng C. Zhou, Charles R. Yang, Theodore R. Cummins. Includes vitae. Includes bibliographical references (leaves 115-135).
34

In vitro studies of hypoxic ischemic down-regulated 1 (HID-1) protein encoded by a novel gene down-regulated in neonatal hypoxic-ischemicencephalopathy in different cell death paradigms

Tsang, Hing-wai., 曾慶威. January 2010 (has links)
published_or_final_version / Paediatrics and Adolescent Medicine / Doctoral / Doctor of Philosophy
35

Inhibitory synpatic transmission in striatal neurons after transient cerebral ischemia

Li, Yan 08 December 2009 (has links)
Large aspiny neurons are the only non-GABAergic neurons in the striatum. After transient cerebral ischemia, large aspiny neurons survive while medium spiny neurons die. Previous studies have shown that differential changes in the intrinsic membrane properties and excitatory synaptic transmission play a role in this selective vulnerability. However, the role of inhibitory synaptic transmission in this selective vulnerability is still unknown. Since inhibitory tone is very important in the control of neuronal excitability, the present study is aimed at examining if there are any changes in inhibitory synaptic transmission in striatal neurons after ischemia and the possible mechanisms. We also examined if facilitation of inhibitory synaptic transmission by muscimol could attenuate ischemic neuronal injury in the striatum after ischemia. Results from this study will improve the understanding of the mechanisms underlying selective neuronal injury after transient cerebral ischemia. We hope this study could contribute to the translational studies for the stroke patients after cardiac arrest. / Indiana University-Purdue University Indianapolis (IUPUI) / In the striatum, large aspiny (LA) interneurons survive transient cerebral ischemia while medium spiny (MS) neurons die. Excitotoxicity is believed to be the major cause for neuronal death after ischemia. Since inhibitory tone plays an important role in the control of neuronal excitability, the present study is aimed at examining if there are any changes in inhibitory synaptic transmission in striatal neurons after ischemia and the possible mechanisms. Transient forebrain ischemia was induced in male Wistar rats using the four-vessel occlusion method. Inhibitory postsynaptic currents (IPSCs) were evoked intrastriatally and whole-cell voltage-clamp recording was performed on striatal slices. The expression of glutamate decarboxylase65 (GAD65) was analyzed using immunohistochemical studies and Western blotting. Muscimol (a specific GABAA receptor agonist) was injected intraperitoneally to the rats (1 mg/kg) to observe ischemic damage, evaluated by counting the survived cells in the striatum after hematoxylin & eosin (HE) staining. The amplitudes of evoked IPSCs were significantly increased in LA neurons while depressed in MS neurons after ischemia. This enhancement was due to the increase of presynaptic release. Muscimol (1 μM) presynaptically facilitated inhibitory synaptic transmission in LA neurons at 24 h after ischemia. The optical density of GAD65-positive terminals and the number of GAD65-positive puncta was significantly increased in the striatum at both 1 day and 3 days after ischemia. Consistently, data from western blotting suggested an increased expression of GAD65 in the striatum after ischemia. For the rats treated with muscimol, the number of survived cells in the striatum was greatly increased compared to the non-treatment group. The present study demonstrates an enhancement of inhibitory synaptic transmission in LA neurons after ischemia, which is contributed by two mechanisms. One is the increased presynaptic release of GABA mediated by presynaptic GABAA receptors. The other is the increased expression of GAD. Facilitation of inhibitory synaptic transmission by muscimol protects striatal neurons against ischemia. Therefore, the enhancement of inhibitory synaptic transmission might reduce excitotoxicity and contribute to the selective survival of LA neurons after ischemia.
36

Hypoxic-ischemic injury in the neonatal rat model: prediction of irreversible infarction size by DiffusionWeighted MR Imaging

Wang, Yanxin, 王燕欣 January 2005 (has links)
published_or_final_version / abstract / Diagnostic Radiology / Master / Master of Philosophy
37

Effects of NPY-Y1 receptor activation or inhibition on free radical generation during in vitro or in vivo cerebral ischemia

Chan, Pui-shan, 陳佩珊 January 2006 (has links)
published_or_final_version / abstract / Medicine / Master / Master of Philosophy
38

"Modulação térmica da lesão isquêmica: estudo in vitro" / Temperature modulation of the ischemic neuronal loss in vitro

Ariga, Suely Kunimi Kubo 25 May 2005 (has links)
A isquemia cerebral causada pela parada cardíaca leva ao desapareciemnto neuronal. studamos os mecanismos de morte celular envolvidos na isquemia in vitro em linhagem de neuroblastoma.O insulto isquêmicao foi reproduzido cultivando as células sem fatores de crescimento, sem glicose e em embiente hipóxico produzido por um sistema de anaerobiose. Os resultados sugerem que a privação de oxigênio, glicose e fatores de cresciemtno do meio de cultura reproduzem o fenômeno semelhante a isquemia. INvestigamos ainda a participação de processo apoptótico e sua modulação térmica. Observams que a hipotermia produz neuroproteção, enquanto a hipertermia agrava o processo de morte celular por apoptose. / Cardiac arrest causes cerebral ischemia and neuronal disappearance. We investigate celular death mechanisms elucidated by a model of ischemia in neuroblastoma cell line. The ischemic insult was reproduced by deprivation of growth factors and glucose in a hypoxic environment produced by an anaerobiosis system. Our results validate the experimental model and revel the participation of an apoptotic process in the celular loss induced by ischemia. We also demonstrated that hypothermia can be used as a neuroprotector agent whereas hyperthermia aggavates celular damage.
39

Efeitos da l-alanil-glutamina na isquemia e reperfusÃo em cÃrebro de ratos wistar / Effects of l-alanyl-glutamine in ischemia and reperfusion in the brain of Wistar rats

AndrÃa da NÃbrega Cirino 09 September 2009 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / O objetivo do presente estudo foi verificar os efeitos da L-alanil-glutamina (Ala-Gln) na isquemia e reperfusÃo em cÃrebro de ratos. Foram utilizados 48 ratos machos, da linhagem Wistar, com idade mÃdia de 62 dias e peso mÃdio de 276,38g, distribuÃdos em quatro grupos: Sham 30 minutos, Isquemia, Sham 90 minutos e Isquemia/ ReperfusÃo. Foi utilizado um modelo de isquemia cerebral experimental global, com oclusÃo da artÃria carÃtida comum bilateral e administraÃÃo de soluÃÃo salina ou Ala-Gln. Os resultados do presente estudo mostraram elevaÃÃo estatisticamente significante no percentual de Ãrea de necrose do grupo Isquemia (13,24  8,82) em relaÃÃo ao grupo Sham 30 minutos (0,12  0,20, p= 0,01). O mesmo ocorreu em relaÃÃo à Ãrea de necrose do grupo Isquemia/ReperfusÃo (13,30  9,91) em relaÃÃo ao Sham 90 minutos (0,70  1,35, p= 0,01). Tais resultados demonstram a efetividade do modelo Isquemia e Isquemia/ReperfusÃo cerebrais utilizados. NÃo foi observada alteraÃÃo significante no percentual de Ãrea de necrose entre os grupos Isquemia Salina (13,24  8,82) e Isquemia Ala-Gln (15,35  6,80, p= 0,34). A mÃdia do percentual de Ãrea isquÃmica do grupo Isquemia/ReperfusÃo Ala-Gln (4,65  1,44) foi significantemente inferior Ãquela encontrada no grupo Isquemia/ReperfusÃo Salina (13,30  9,91, p= 0,03). A administraÃÃo prÃvia de Ala-Gln a ratos submetidos à Isquemia/reperfusÃo cerebral nÃo promoveu reduÃÃo no percentual de Ãrea de necrose na lesÃo isquÃmica. Por outro lado, esse dipeptÃdeo reduziu o percentual de necrose cerebral na lesÃo Isquemia/ReperfusÃo cerebral. / The aim of this study was to investigate the effects of L-alanyl-glutamine (Ala-Gln) in ischemia and reperfusion in rat brain. We used 48 male rats, Wistar, with a mean age of 62 days and average weight of 276.38 g, divided into four groups: Sham 30 minutes ischemia, 90 minutes and Sham Ischemia / Reperfusion. We used a model of experimental global cerebral ischemia with occlusion of bilateral common carotid artery and administration of saline or Ala-Gln. The results of this study showed a statistically significant increase in the percentage of necrotic area of the ischemia group (13.24  8.82) than in group Sham 30 minutes (0.12  0.20, p= 0.01). The same occurred in relation to the area of necrosis in ischemia-reperfusion group (13.30  9.91) compared to Sham 90 minutes (0.70  1.35, p= 0.01). These results demonstrate the effectiveness of the model Ischemia and Ischemia / Reperfusion brain used. There was no significant change in the percentage of necrotic area between Salina ischemia groups (13.24  8.82) and ischemia Ala-Gln (15.35  6.80, p= 0.34). The average percentage of ischemic area of group Ischemia / Reperfusion Ala-Gln (4.65  1.44) was significantly lower than that in group Ischemia / Reperfusion Salina (13.30  9.91, p= 0.03). The prior administration of Ala-Gln in rats subjected to ischemia / reperfusion did not cause reduction in the percentage of necrosis in ischemic injury. Moreover, this dipeptide reduced the percentage of necrosis in the cerebral injury cerebral ischemia / reperfusion.
40

In vitro and in vivo effects of thrombopoietin on protection against hypoxia-ischemia-induced neural damage.

January 2008 (has links)
Chiu, Wui Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 107-128). / Abstracts in English and Chinese. / Abstract --- p.i / 中文摘要 --- p.iv / Acknowledgements --- p.vi / Publications --- p.viii / Table of Contents --- p.ix / List of Tables --- p.xiv / List of Figures --- p.xv / List of Abbreviations --- p.xviii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Hypoxic-ischemic encephalopathy in human infants --- p.1 / Chapter 1.1.1 --- Incidence --- p.1 / Chapter 1.1.2 --- Biphasic development of HI brain damage --- p.2 / Chapter 1.1.2.1 --- Initiating mechanism: energy failure in immature brain --- p.3 / Chapter 1.1.2.2 --- Biochemical cascades --- p.4 / Chapter 1.1.2.2.1 --- Excitatory amino acid receptor activation by glutamate --- p.4 / Chapter 1.1.2.2.2 --- Intracellular calcium accumulation --- p.4 / Chapter 1.1.2.2.3 --- Formation of free radicals --- p.5 / Chapter 1.1.2.2.3.1 --- Reactive oxygen species (ROS) --- p.5 / Chapter 1.1.2.2.3.2 --- Nitric oxide (NO) --- p.6 / Chapter 1.1.2.3 --- Release of inflammatory mediators --- p.6 / Chapter 1.1.2.4 --- Mitochondrial dysfunction --- p.7 / Chapter 1.1.2.5 --- Final path to death: necrosis or apoptosis --- p.8 / Chapter 1.1.2.6 --- Ways to change: neuronal survival and proliferation signaling --- p.8 / Chapter 1.1.3 --- Interventions for neonatal hypoxia-ischemia --- p.9 / Chapter 1.2 --- Animal models mimicking hypoxia-ischemia brain injury --- p.12 / Chapter 1.2.1 --- Comparisons of animal models of hypoxia-ischemia --- p.12 / Chapter 1.2.2 --- Development of neonatal rat model with hypoxic-ischemic damage --- p.14 / Chapter 1.3 --- Neural stem/progenitor cells --- p.15 / Chapter 1.3.1 --- Effect of hypoxic-ischemia on neural stem/progenitor cells --- p.17 / Chapter 1.4 --- Thrombopoietin --- p.18 / Chapter Chapter 2 --- Objectives --- p.23 / Chapter Chapter 3 --- Materials and Methodology --- p.24 / Chapter 3.1 --- Establishment of neonatal rat model of HI brain damage and effects of TPO on neural protection --- p.24 / Chapter 3.1.1 --- Animal protocols --- p.24 / Chapter 3.1.2 --- Induction of HI brain damage in neonatal rats --- p.24 / Chapter 3.1.3 --- Treatment with TPO --- p.25 / Chapter 3.1.4 --- Sacrifice of rats --- p.25 / Chapter 3.1.5 --- Read-out measurements --- p.26 / Chapter 3.1.5.1 --- Brain weight --- p.26 / Chapter 3.1.5.2 --- Gross injury assessment of the right hemisphere --- p.26 / Chapter 3.1.5.3 --- Histology --- p.27 / Chapter 3.1.5.4 --- Blood cell count --- p.27 / Chapter 3.1.5.6 --- Functional assessments --- p.28 / Chapter 3.1.5.6.1 --- Grip traction test --- p.28 / Chapter 3.1.5.6.2 --- Elevated body swing test --- p.28 / Chapter 3.1.5.7 --- Statistical analysis --- p.28 / Chapter 3.2 --- Establishment of in vitro model of primary mouse NSPs and the effect of TPO on their proliferation --- p.29 / Chapter 3.2.1 --- Mouse embryo dissection for the extraction of NSP --- p.29 / Chapter 3.2.2 --- Culturing of NSP --- p.30 / Chapter 3.2.3 --- Immunofluorescence staining for stem cell markers --- p.31 / Chapter 3.2.4 --- Neurosphere assay with different combinations of mitogens --- p.31 / Chapter 3.2.5 --- Neurosphere assay with different concentrations of TPO --- p.32 / Chapter 3.2.6 --- Neurosphere assay under hypoxia --- p.32 / Chapter 3.2.7 --- Statistical analysis --- p.33 / Chapter Chapter 4 --- Effects of thrombopoietin on neonatal rat models of hypoxia-ischemia brain damage --- p.39 / Chapter 4.1 --- Summary of experimental settings --- p.39 / Chapter 4.2 --- Results --- p.39 / Chapter 4.2.1 --- Mortality --- p.39 / Chapter 4.2.2 --- Effects of TPO on p7 mild damage model 1 week post-surgery --- p.40 / Chapter 4.2.2.1 --- Body and brain weights --- p.40 / Chapter 4.2.2.2 --- Gross injury score --- p.41 / Chapter 4.2.2.3 --- Cortex and hippocampus area --- p.41 / Chapter 4.2.2.4 --- Blood cell counts --- p.42 / Chapter 4.2.3 --- Effects of TPO on p7 severe damage model 1 week post-surgery --- p.43 / Chapter 4.2.3.1 --- Body and brain weights --- p.43 / Chapter 4.2.3.2 --- Gross injury score --- p.43 / Chapter 4.2.3.3 --- Cortex area --- p.44 / Chapter 4.2.3.4 --- Blood cell counts --- p.44 / Chapter 4.2.4 --- Effects of TPO on p7 severe damage model 3 week post-surgery --- p.45 / Chapter 4.2.4.1 --- Body and brain weights --- p.45 / Chapter 4.2.4.2 --- Gross injury score --- p.46 / Chapter 4.2.4.3 --- Blood cell counts --- p.46 / Chapter 4.2.4.4 --- Functional outcomes --- p.46 / Chapter 4.2.5 --- Effects of TPO on pl4 severe damage model 1 week post-surgery --- p.47 / Chapter 4.2.5.1 --- Body and brain weights --- p.47 / Chapter 4.2.5.2 --- Gross injury score --- p.48 / Chapter 4.2.5.3 --- Cortex area --- p.48 / Chapter 4.2.5.4 --- Blood cell counts --- p.49 / Chapter 4.3 --- Discussion --- p.49 / Chapter Chapter 5 --- Effects of thrombopoietin on the proliferation of primary mouse neural stem/ progenitor cells in culture --- p.83 / Chapter 5.1 --- Summary of experimental settings --- p.83 / Chapter 5.2 --- Results --- p.83 / Chapter 5.2.1 --- Effect of EGF or bFGF withdrawal on NSP proliferation --- p.84 / Chapter 5.2.2 --- Dose effect of TPO treatment on NSP proliferation --- p.85 / Chapter 5.2.3 --- Effect of hypoxia --- p.85 / Chapter 5.2.4 --- Effect of TPO treatment in combination with hypoxia --- p.86 / Chapter 5.2.5 --- Detection of neural progenitor cell marker --- p.87 / Chapter 5.3 --- Discussion --- p.88 / Chapter Chapter 6 --- General discussion --- p.101 / Bibliography --- p.106

Page generated in 0.0875 seconds