• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 130
  • 49
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 240
  • 240
  • 49
  • 44
  • 24
  • 24
  • 23
  • 23
  • 19
  • 19
  • 19
  • 19
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

The effects of anteromedial frontal and caudate lesions on DRL performance in the rat/

Boysen, Sarah Till, January 1984 (has links)
No description available.
102

The effects of temporal neocortical injuries on the learning and retention of pattern discriminations in the rat /

Cloud, Mark David January 1984 (has links)
No description available.
103

The neural progenitor to neuron transition : role and regulation of GrouchoTLE proteins

Buscarlet, Manuel. January 2008 (has links)
No description available.
104

Asymmetric propagation of spreading depression along the anteroposterior axis of the cerebral cortex in mice

Obrenovitch, Tihomir P., Godukhin, O.V. January 2001 (has links)
No / The purpose of this study was to ascertain whether or not spreading depression (CSD) propagates symmetrically along the anteroposterior axis of the cortex of mice, and to determine where CSD should be elicited to achieve a uniform exposure of the cortex to this phenomenon. Experiments were performed in halothane-anesthetized mice, with three different locations aligned 1.5 mm from the midline used for either KCl elicitation of CSD or the recording of its propagation. Our results demonstrated that, at least in the mouse cortex, CSD propagated much more effectively from posterior to anterior regions than in the opposite direction. This feature was due to a different efficacy of propagation in the two opposite directions, and not to a reduced susceptibility of occipital regions to CSD elicitation. Heterogeneous CSD propagation constitutes a potential pitfall for neurochemical studies of post-CSD changes in mice, as brain tissue samples collected for this purpose should be uniformly exposed to CSD. Occipital sites for CSD induction are clearly optimal for this purpose. If CSD propagation is confirmed to be more effective from posterior to anterior regions in other species, this may be relevant to the pathophysiology of classical migraine because the most frequent aura symptoms (i.e., visual disturbances) originate in the occipital cortex.
105

Some computational aspects of attractor memory

Rehn, Martin January 2005 (has links)
<p>In this thesis I present novel mechanisms for certain computational capabilities of the cerebral cortex, building on the established notion of attractor memory. A sparse binary coding network for generating efficient representation of sensory input is presented. It is demonstrated that this network model well reproduces receptive field shapes seen in primary visual cortex and that its representations are efficient with respect to storage in associative memory. I show how an autoassociative memory, augmented with dynamical synapses, can function as a general sequence learning network. I demonstrate how an abstract attractor memory system may be realized on the microcircuit level -- and how it may be analyzed using similar tools as used experimentally. I demonstrate some predictions from the hypothesis that the macroscopic connectivity of the cortex is optimized for attractor memory function. I also discuss methodological aspects of modelling in computational neuroscience.</p>
106

Functional Properties and Organization of Primary Somatosensory Cortex

Esteky, Hossein 12 1900 (has links)
The physiological characteristics and organization of cat primary somatosensory cortex (SI) were studied in electrophysiological and anatomical experiments. In single cell recording experiments, quantitatively controlled mechanical stimuli were used to examine the responses of SI cortical neurons to the velocity component of skin or hair displacement. The firing frequency of most rapidly adapting neurons increased as stimulus velocity was increased. Rapidly adapting neurons were classified based on their response patterns to constant-velocity ramp stimuli. Neurons in these classes differed significantly in sensitivity to stimulus velocity and amplitude, adaptation rate, and spontaneous firing rate. The results suggest that frequency coding of stimulus displacement velocity could be performed by individual SI rapidly adapting neurons, and that the classes of rapidly adapting neurons may play different roles in sensation of tactile stimuli. Tract-tracing experiments were used to investigate the ipsilateral corticocortical connections of areas 3b and 2 in SI. Different patterns of connections were found for these areas: area 2 projects to areas 3b, 1, 3a, 5a, 4 and second somatosensory cortex (SII), and area 3b projects to areas 2, 1, 3a and SII. To further compare the organization of these areas, the thalamic input to the forepaw representation within each area was studied. The forepaw region in area 3b receives thalamic input exclusively from ventroposteriopr lateral nucleus (VPL), while area 2 receives input from VPL, medial division of the posterior complex (PoM), and lateral posterior nucleus (LP). These results suggest that area 2 lies at a higher position in the hierarchy of somatosensory information flow.
107

Contribution à l'étude des bases génétiques de la polymicrogyrie

El Waly, Bilal 03 December 2012 (has links)
La polymicrogyrie est un type de malformation corticale dans laquelle on retrouve un excès de gyrations et une surface corticale irrégulière. La polymicrogyrie peut être provoquée par des causes environnementales ou génétiques. C'est ces dernières auxquelles nous nous sommes intéressés et que nous avons étudié afin d'approfondir nos connaissances sur les bases génétiques de la polymicrogyrie. Nous traitons trois projets qui se situent à trois niveaux de recherche différents : étude d'un gène dont la pathogénicité est établie pour le premier, étude de gènes candidats pour le deuxième et recherche de nouveaux gènes candidats pour le troisième. Dans le premier projet, nous avons réussi à prouver l'implication du gène NHEJ1 dans le développement du cortex cérébral. Nous avons montré, grâce à l'ARN interférence in utero que la dérégulation de Nhej1 chez le rat perturbe la migration neuronale, déclenche un phénomène de mort neuronale massive et désorganise les couches corticales. Dans le deuxième projet, après une étude par hybridation génomique comparative sur puce d'ADN, nous avons identifié une duplication dans la région 1p36 chez un patient présentant une polymicrogyrie bilatérale. Nous avons montré que cette duplication casse le gène ENO1 et diminue son expression. L'expression spatio-temporelle d'ENO1 est en accord avec un rôle de celui-ci pendant le développement cérébral. Nous avons également montré que la diminution de l'expression du gène Eno1 perturbe la migration neuronale radiale. / Polymicrogyria is a cortical malformation characterized by excessive gyration and an irregular cortex surface. Environmental and genetic causes can be responsible for this disorder. Our principal aim was to better understand the genetic basis of polymicrogyria. Three projects were conducted. The first focused on the NHEJ1 gene. Using RNA interference and in utero electroporation, we showed that deregulation of NHEJ1 disrupts neuronal migration, triggers massive neuronal cell death and disorganizes the cortical layers. In the second project, we identified by comparative genomic hybridization microarray, a duplication in the 1p36 region in a patient with bilateral polymicrogyria. We have shown that this duplication breaks the ENO1 gene and reduces its expression. The spatio-temporal expression of ENO1 and the fact that its deregulation disrupts neuronal migration indicates that ENO1 is a good candidate gene for cortical development. Finally, in the third project, we identified by exome sequencing of familial cases of bilateral polymicrogyria, one coding variation in the GABRA3 gene. Our work allowed us to generate new knowledge for several candidate genes for polymicrogyria.
108

The Role of Dorsal Anterior Cingulate Cortex in the Motor Control

Unknown Date (has links)
We sought to better understand human motor control by investigating functional interactions between the Supplementary Motor Area (SMA), dorsal Anterior Cingulate Cortex (dACC), and primary motor cortex (M1) in healthy adolescent participants performing visually coordinated unimanual finger-movement and n-back working memory tasks. We discovered modulation of the SMA by the dACC by analysis of fMRI BOLD time series recorded from the three ROIs (SMA, dACC, and M1) in each participant. Two measures of functional interaction were used: undirected functional connectivity was measured using the Pearson product-moment correlation coefficient (PMCC), and directed functional connectivity was measured from linear autoregressive (AR) models. In the first project, task-specific modulation of the SMA by the dACC was discovered while subjects performed a coordinated unimanual finger-movement task, in which the finger movement was synchronized with an exogenous visual stimulus. In the second project, modulation of the SMA by the dACC was found to be significantly greater in the finger coordination task than in an n-back working memory, in which the same finger movement signified a motor response indicating a 0-back or 2-back working memory match. We thus demonstrated in the first study that the dACC sends task-specific directed signals to the supplementary motor area, suggesting a role for the dACC in top-down motor control. Finally, the second study revealed that these signals were significantly greater in the coordinated motor task than in the n-back working memory task, suggesting that the modulation of the SMA by the dACC was associated with sustained, continuous motor production and/or motor expectation, rather than with the motor movement itself. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
109

Avaliação temporal da expressão gênica e proteica de S100b no encéfalo de ratos neonatos submetidos à anóxia. / Assessment of S100b gene and protein expression over time in the brain of newborn rats subjected to anoxia.

Hamasaki, Mike Yoshio 27 January 2014 (has links)
O presente trabalho objetivou explorar a eventual variação da expressão do mRNA e da proteína S100b no hipocampo, cerebelo e córtex cerebral de ratos neonatos em condições de anóxia, comparativamente à condições controle. Este estudo foi desenvolvido em ratos albinos, divididos em dois grupos: o grupo Experimental Anóxia (EA) e o grupo Experimental Controle (EC), que por sua vez foram subdivididos em tempos de 2, 4, 6, 12 e 24 horas no que se refere à coleta de amostras após a aplicação dos estímulos pré-estabelecidos para cada grupo. Dos períodos avaliados, nossos resultados indicaram que a anóxia proporcionou um pico na expressão gênica de S100b após duas horas e proteica após 4 horas nas áreas do hipocampo e cerebelo. O córtex cerebral do grupo EA quando comparado ao grupo EC, não apresentou nenhum aumento significante de S100b nos períodos avaliados. Os resultados obtidos contribuem de forma crucial para elucidação do papel da proteína S100b como biomarcadora na EHI, bem como no esclarecimento parcial da função deste gene com relação à fisiopatologia da doença. / The aim of the present study was to investigate the temporal variation in the expression of S100b mRNA and protein in the hippocampus, cerebellum, and cerebral cortex of newborn rats under conditions of anoxia compared with control rats. The study was performed using two groups albino rats: Experimental Anoxia (EA) and Experimental Control (EC). The animals in both EA and EC were distributed in the following subgroups relative to the time elapsed since the application of the stimuli predefined for each group: two, four, six, 12, and 24 hours. Anoxia induced a peak in the S100b gene expression after two hours and protein expression after 4 hours in the hippocampus and cerebellum. With respect to the cerebral cortex, S100b never exhibited a significant increase in the EA group compared with the EC group. The results of the present study represent a crucial contribution to the elucidation of the role protein S100b plays as a biomarker in HIE, as well as a contribution to the elucidation of the role the corresponding gene plays in the physiopathology of the disease.
110

Heterosynaptic metaplasticity in area CA1 of the hippocampus

Hulme, Sarah R, n/a January 2009 (has links)
Long-term potentiation (LTP) is an activity-dependent increase in the efficacy of synaptic transmission. In concert with long-term depression (LTD), this synaptic plasticity likely underlies some types of learning and memory. It has been suggested that for LTP/LTD to act as effective memory storage mechanisms, homeostatic regulation is required. This need for plasticity regulation is incorporated into the Bienenstock, Cooper and Munro (BCM) theory by a threshold determining LTD/LTP induction, which is altered by the previous history of activity (Bienenstock et al., 1982). The present work aimed to test key predictions of the BCM model. This was done using field and intracellular recordings in area CA1 of hippocampal slices from young, adult male Sprague-Dawley rats. The first prediction tested was that following a strong, high-frequency priming stimulation all synapses on primed cells will show inhibition of subsequent LTP and facilitation of LTD induction (heterosynaptic metaplasticity). This was confirmed using two independent Schaffer collateral pathways to the same CA1 pyramidal cells. Following priming stimulation to one pathway, LTP induction was heterosynaptically inhibited and LTD facilitated. To more fully investigate whether all synapses show metaplastic changes, the priming stimulation was given in a different dendritic compartment, in stratum oriens, prior to LTP induction in stratum radiatum. This experiment supported the conclusion that all synapses show inhibited LTP following priming. A second prediction of the BCM model is that metaplasticity induction is determined by the history of cell firing. To investigate this, cells were hyperpolarized during priming to completely prevent somatic action potentials. Under these conditions inhibitory priming of LTP was still observed, and thus somatic action potentials are not critical for the induction of the effect. The next aim was to determine the mechanism underlying heterosynaptic metaplasticity. One way in which plasticity induction can be altered is through changes in gamma-aminobutyric acid (GABA)-mediated inhibition of pyramidal cells. For this reason, it was tested whether blocking all GABAergic inhibition, for the duration of the experiment, would prevent priming of LTP. However, priming inhibited subsequent LTP and it was concluded that GABAergic changes do not underlie either the induction, or expression, of the metaplastic state. Proposed revisions to the BCM model predict that postsynaptic elevations in intracellular Ca�⁺ determine the induction of metaplasticity. There are many potential sources for postsynaptic Ca�⁺ elevations, including entry through N-methyl-D-asparate receptors (NMDARs) or voltage-dependent calcium channels (VDCCs), or release from intracellular stores. Results of the present work demonstrate that the inhibition of LTP is dependent on the release of Ca�⁺ from intracellular stores during priming; however this release is not triggered by Ca�⁺ entry through NMDARs or VDCCs, or via activation of metabotropic glutamate receptors. Overall, the present results show that, in accordance with the BCM model, a high level of prior activity induces a cell-wide metaplastic state, such that LTD is facilitated and LTP is inhibited. In contrast to predictions of the BCM model, this is not mediated by cell-firing during priming. Instead the release of Ca�⁺ from intracellular stores is critical for induction of the metaplastic state.

Page generated in 0.0824 seconds