• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 130
  • 49
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 240
  • 240
  • 49
  • 44
  • 24
  • 24
  • 23
  • 23
  • 19
  • 19
  • 19
  • 19
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Functional changes in the cortex during mental activation applications of regional cerebral blood flow measurements in neuropsychological research /

Maximilian, V. Alexander, January 1980 (has links)
Thesis--Lund. / Bibliography: p. 117-121.
92

Nucleus basalis cholinergic lesions and defense responses

Knox, Dayan, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xii, 103 p.; also includes graphics (some col.). Includes bibliographical references (p. 90-103). Available online via OhioLINK's ETD Center
93

Μελέτη του ρόλου της geminin στη δημιουργία και διαφοροποίηση των πολυδύναμων κυττάρων του εγκεφαλικού φλοιού

Σπέλλα, Μαγδαληνή 27 September 2011 (has links)
Η δημιουργία του εγκεφαλικού φλοιού στηρίζεται στη διαδοχική εμφάνιση πληθυσμών προγονικών κυττάρων, οι οποίοι δίνουν γένεση σε νευρικά και γλοιακά κύτταρα. Πρόκειται για μία διαδικασία που απαιτεί το συγχρονισμό των διεργασιών αυτο-ανανέωσης και διαφοροποίησης των προγονικών νευρικών κυττάρων, και διαμεσολαβείται από τον ταυτόχρονο έλεγχο των διαδικασιών κυτταρικού κύκλου, μεταγραφικής ρύθμισης και αναδιαμόρφωσης της δομής της χρωματίνης. Η πρωτεΐνη Geminin έχει προταθεί ως ένα μόριο που ρυθμίζει τόσο τον κυτταρικό πολλαπλασιασμό όσο και την κυτταρική διαφοροποίηση. Τα αποτελέσματα της παρούσας διατριβής δείχνουν ότι η πρωτεΐνη Geminin και ο μοριακός της συνεργάτης Cdt1 εκφράζονται στα προγονικά νευρικά κύτταρα της κοιλιακής και υποκοιλιακής ζώνης του αναπτυσσόμενου φλοιού του μυός. Στα προκαθορισμένα προς νευρωνική διαφοροποίηση πρόδρομα κύτταρα που εκφράζουν τις προνευρικές bHLH πρωτεΐνες Mash1 και Neurogenin2 η έκφρασή τους μειώνεται. Επίσης δείχνουμε ότι οι παράγοντες Geminin και Cdt1 επιδεικνύουν ένα περιοδικό πρότυπο έκφρασης στα προγονικά νευρικά κύτταρα του φλοιού του μυός που εξαρτάται από τη φάση του κυτταρικού κύκλου. Προκειμένου να διερευνηθεί ο ρόλος της πρωτεΐνης Geminin in vivo στις διαδικασίες αυτο-ανανέωσης, διαδοχής και διαφοροποίησης των προγονικών νευρικών κυττάρων του φλοιού, πραγματοποιήθηκαν πειράματα υπερέκφρασης και αποσιώπησης του γονιδίου της Geminin στον αναπτυσσόμενο εγκεφαλικό φλοιό του μυός. Τα αποτελέσματά μας υποδεικνύουν ότι η απουσία της Geminin αυξάνει τον αριθμό των προγονικών κυττάρων της κοιλιακής ζώνης του φλοιού, μεταβάλλοντας τον ρυθμό κυτταρικής διαίρεσης που εμφανίζουν τα παραπάνω κύτταρα κατά τα πρώιμα στάδια της φλοιϊκής νευρογένεσης. Η Geminin ρυθμίζει επίσης τον καθορισμό των βασικών πρόδρομων κυττάρων της υποκοιλιακής ζώνης, ενός πληθυσμού προγονικών νευρικών κυττάρων που δίνει κυρίως γένεση σε διαφοροποιημένα νευρικά κύτταρα. Επιπλέον, η υπερέκφραση της Geminin αυξάνει τον πληθυσμό των προκαθορισμένων προς νευρωνική διαφοροποίηση πρόδρομων κυττάρων καθώς και τον αριθμό των φλοιϊκών νευρώνων προάγοντας την έξοδο από τον κυτταρικό κύκλο. Συνοψίζοντας, τα αποτελέσματά μας καταδεικνύουν ότι η Geminin συμμετέχει στη ρύθμιση του πληθυσμού των προγονικών κυττάρων του φλοιού και στη μετάβαση μεταξύ των διαδοχικών προγονικών πληθυσμών ρυθμίζοντας τελικά την παραγωγή των φλοιϊκών νευρώνων. Τα αποτελέσματά μας επομένως προσδίδουν στη Geminin ένα φυσιολογικό ρόλο στο σχηματισμό του φλοιού των θηλαστικών. / Cortical development is a highly ordered process, involving the timely orchestration of the appearance of different neural progenitor lineages, which succeed one another in order to generate the neurons and glia comprising the cortex. It is a process requiring coordination of proliferation and differentiation which in turn depends upon the precise control of cell cycle parameters, chromatin remodeling and transcriptional activity. Geminin has been shown to regulate cell proliferation, fate determination and organogenesis, representing a potential link between these processes. We show here that Geminin and its binding partner Cdt1 are expressed by neural progenitor cells of the ventricular and subventricular zone of the developing mouse cortex. However, the majority of the Geminin and Cdt1 expressing cells are distinct from fate-restricted precursor cells expressing the bHLH proneural proteins Mash1 and Neurogenin2. Importantly, BrdU incorporation experiments show a cell cycle specific expression pattern of Geminin and Cdt1 in neural progenitors of the mouse cortex. In order to investigate Geminin in vivo role in the self-renewal, maintenance, lineage commitment and differentiation of cortical neural progenitors, we have specifically over-expressed and deleted Geminin in the developing cortex. Our results showed that Geminin function in the developing mouse cortex regulates the number of the apical progenitors. Interestingly, this impact on progenitor number is the consequence of the accelerated cell cycle that these apical progenitors exhibit during early stages of cortical development. Moreover, Geminin deletion and over-expression in the cortex also regulated the fate specification of the basal cortical progenitors of the subventricular zone. Furthermore, our results demonstrated that Geminin affects the population of the committed neural precursors, the rate of cell cycle exit and, subsequently, the numbers of cortical neurons. Our study assigns Geminin with a role in regulating the progenitor cell number, the timing of lineage transition, the progenitor neuronal commitment and the subsequent neuron generation.
94

Estudo das caracteristicas morfologicas do lobo da insula em pacientes portadores de epilepsia do lobo temporal medial / Study of the morphologie characteristics of the insula lobe in patients with epilepsy of the medial temporal lobe

Chaddad Neto, Feres Eduardo Aparecido 21 February 2006 (has links)
Orientador: Evandro Pinto da Luz de Oliveira / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas / Made available in DSpace on 2018-08-06T17:08:11Z (GMT). No. of bitstreams: 1 ChaddadNeto_FeresEduardoAparecido_M.pdf: 5740692 bytes, checksum: 41706f7c50d8c3c6567a1c592112c6e0 (MD5) Previous issue date: 2006 / Resumo: A epilepsia do lobo temporal medial é o subtipo mais freqüente de epilepsia do lobo temporal e é causada, principalmente, pela esclerose medial temporal (EMT). A EMT é caracterizada pela esclerose hipocampal e diferentes graus de acometimento das estruturas vizinhas como amídala, giro parahipocampal e córtex entorrinal. O lobo da ínsula é uma estrutura neocortical e se constitui no envoltório externo da região dos núcleos da base, apresentando várias conexões com o lobo temporal e com o sistema límbico. O estudo apresenta como objetivo analisar o lobo da ínsula, descrevendo se há alteração do mesmo pelo método Neuroline e E-Film. O estudo avaliou 40 indivíduos com EMT e 40 do grupo controle. Pelo método Neuroline 45% eram homens e 55% eram mulheres com EMT- Pelo método E-Fim a distribuição foi de 50% entre os sexos do grupo esclerose. Os casos foram avaliados por um método para as medidas da insula (E-Film) e outro método para o cálculo do volume (Neuroline). Não houve diferença estatística de alteração de volume e das medidas do lobo da ínsula nos pacientes portadores de EMT. O estudo não demonstrou alteração morfológica da ínsula quando comparado os dois grupos / Abstract: The temporal medial epilepsy is the most common type of temporal lobe epilepsy caused, specially, by temporal medial sclerosis (TMS). The TMS is characterized by hippocampal sclerosis and by distinghished grades of injury near to other neurological structures such as: amygdaloid nucleus, parahippocampal girus and entorhinal region. The insula's lobe is neocortical structure which is formed by an external wrapped of the basal ganglion, it's usually presenting some connections with temporal lobe and with limbic system. The aim's study was analyzing the insula's lobe if there are alteration with patient's carriers of TMS by Neuroline's and E-Film's methods. The study analyzed 40 patients with TMS and 40 people from the control cluster. All cases were evaluated by two methods: measurement of insula's cortex (E-Film) and evaluation of the insula's volume (Neuroline). By Neuroline's method 45 per cent were male and 55 per cent were female. By E-Film's method there are distribution with half of the percentage for both genders. There was no statistical difference between the insula's volume and insula's measurement for the two groups. This study did not show the insula's morphological variation when these two groups were compared / Mestrado / Neurologia / Mestre em Ciências Médicas
95

Some studies on metabolism and active transport

Blond, David Maxwell January 1964 (has links)
No description available.
96

Snf2l Regulates Foxg1 Expression to Control Cortical Progenitor Cell Proliferation and Differentiation

McGregor, Chelsea P. January 2012 (has links)
Over the past five years the role of epigenetic modifiers in brain development has become increasingly evident. In this regard, Snf2l, a homolog of the chromatin remodeling protein ISWI, was shown to have enriched expression in the brain and be important for neuronal differentiation. Mice lacking functional Snf2l have hypercellularity of the cerebral cortex due to increased cell cycle re-entry. In this thesis I demonstrate the effects of Snf2l-ablation on cortical progenitor cells including increased proliferation and cell cycle deregulation, the consequence of which is a delay in neuronal migration and altered numbers of mature cortical neurons. This phenotype arises from increased expression of Foxg1, a winged-helix repressor expressed in the forebrain and anterior optic vesicle. Moreover, genetically reducing its overexpression rescues the Snf2l-ablated phenotype. Snf2l is bound directly to a promoter region of Foxg1 suggesting that it acts as a repressive regulator in vivo and is an important factor in forebrain differentiation.
97

The spatial distribution of cortical interneurons: the role of clustered protocadherins

Gallerani, Nicholas Edmund January 2021 (has links)
The spatial patterning of neurons is a fundamental problem in neuroscience. The functions of the brain are rooted in the cellular architecture that underlies the structure of the brain. In the cerebral cortex, the functions of the cortex depend on the proper assembly of circuits made up of long-range excitatory neurons and locally-projecting inhibitory interneurons. Interneurons are incredibly diverse from a morphological and functional perspective and are found in every cortical area. Unlike excitatory cortical neurons, interneurons are born outside of the cortex and migrate long distances into the cortex and distribute across the cortex broadly. How do these diverse cells that essentially invade the cortex properly distribute? How do different developmental stages contribute to the final patterning of interneuron subtypes, and what are the molecules that influence this process? In this dissertation, I will present my original research which has advanced our knowledge of the answers to these fundamental questions in the field of developmental neuroscience. I addressed these questions by applying a range of techniques including mouse genetics, immunohistochemistry, confocal microscopy, and point pattern analysis. My research has shown that cortical interneuron subtypes are spatially independent. Spatial patterns of cortical interneuron subtypes are non-random within subtypes, but are randomly positioned with respect to other subtypes. I also explored the effects of loss of diversity within the clustered protocadherin family of adhesion molecules. Though these molecules do not appear to play a role in subtype specific spatial independence, I found that loss of clustered protocadherin diversity alters the density and laminar distribution of cortical interneuron subtypes. I also contributed to the development of genetic tools which could help us further understand how developmental stages contribute to final interneuron distribution. My original research has collectively advanced our knowledge of how cortical interneurons achieve their final distributions during development and has opened up new avenues of scientific inquiry for future research in developmental neuroscience.
98

Etude du rôle des facteurs de transcription Dmrt3 et Dmrt5 dans le développement cortical: Dmrt3 et Dmrt5 maintiennent l'identité corticale dans les progéniteurs du télencéphale dorsal au cours du développement

Desmaris, Elodie 14 July 2020 (has links) (PDF)
La spécification de l’identité ventrale ou dorsale des progéniteurs au cours du développement du télencéphale est la première étape cruciale du développement du cortex cérébral. Les gènes doublesex and mab-3 related (Dmrt) Dmrt3 et Dmrt5 codent pour des facteurs de transcription à doigt de Zinc. Ces gènes sont coexprimés selon un gradient fort caudomédialement à plus faible rostrolatéralement dans le primordium du cortex cérébral. Nous avons d’abord démontré qu’ils étaient tous deux nécessaires pour la formation normale de l’hème corticale, l’hippocampe et le néocortex caudomédian. Nous avons plus récemment adressé le rôle de Dmrt3 et Dmrt5 dans le contrôle de la régionalisation dorsale/ventrale du télencéphale chez la souris, en comparant les phénotypes d’embryons simple knock out (KO) aux double KO (dKO), et par une expression ectopique de Dmrt5 dans le télencéphale ventral. Nous avons mis en évidence que DMRT3 et DMRT5 agissent comme des régulateurs critiques de l’identité dorsoventrale des cellules progénitrices en réprimant les régulateurs ventralisants. Les régulateurs transcriptionnels précoces de la destinée ventrale exprimés dans la partie dorsale de l’éminence ganglionnaire latérale tel que Gsx2 sont régulés positivement dans le télencéphale dorsal embryons dKO et régulés négativement lorsque les progéniteurs du télencéphale ventral expriment Dmrt5 de manière ectopique. La surexpression conditionnelle de Dmrt5 au sein du télencéphale entier génère un profil d’expression et des défauts très similaires à ceux observés lors d’une activité Gsx2 diminuée. De plus, les embryons Emx2 ;Dmrt5 double KO montrent un phénotype similaire à celui des embryons dKO. DMRT3, DMRT5 et le facteur de transcription à homéobox EMX2 peuvent se lier à un enhancer spécifique du télencéphale ventral dans le locus Gsx2. Ensemble, nos résultats montrent des fonctions coopératives de DMRT3, DMRT5 et EMX2 dans la distinction entre identité dorsale et ventrale au sein du télencéphale. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
99

Behavioral investigation of the basolateral amygdala and of the pyriform cortex in rats

Beaulieu, Nicole January 1990 (has links)
No description available.
100

Astrocyte-mediated purinergic signalling in the Fragile X mouse cortex / Purinergic signalling in the Fragile X mouse cortex

Reynolds, Kathryn January 2021 (has links)
Disordered communication between cortical neurons and glia underlies many of the characteristics of Fragile X syndrome (FXS), the most common monogenic form of intellectual disability and autism spectrum disorder (ASD). Despite extensive research, no effective treatments exist to comprehensively mitigate ASD- or FXS-related cognitive and motor disabilities, sensory hyperresponsivity, seizures, and other excitation-related symptoms. Glial-glial and glial-neuronal communication can be facilitated by purinergic signalling pathways, which utilize ATP, UTP, and their metabolites to influence both short-term and longer-term activation. The overall objective of this thesis work was to establish whether purinergic signalling is dysregulated within cortical astrocytes derived from the Fmr1 KO mouse model of FXS, and furthermore, to determine whether astrocyte purinergic dysregulations contribute to aberrant Fmr1 KO neuronal-glial interactions. Collectively, these studies provide the first reported evidence that P2Y receptor-driven purinergic signalling is elevated in Fmr1 KO cortical astrocytes, and suggest that this impacts the formation and activity of neuronal circuitry in a manner consistent with FXS symptomatology. Fmr1 KO cortical astrocyte dysregulations included elevated expression of P2Y2 and P2Y6 purinergic receptors, increased intracellular calcium release following P2Y activation, aberrant levels of intracellular purinergic signalling molecules, and increased ectonucleotidase glycosylation. UTP treatment promoted excess Fmr1 KO astrocyte expression and secretion of the synaptogenic protein TSP-1 to potentially influence neuronal connectivity, as well as increased phosphorylation of transcription factor STAT3 to likely drive cortical immune responses. Both exogenous UTP and the presence of Fmr1 KO astrocyte secretions promoted neurite outgrowth, while Fmr1 KO astrocyte-neuron co-cultures demonstrated elevated neuronal burst frequency that was normalized through chronic and selective P2Y2 antagonism. Together, these findings indicate novel and significant astrocyte P2Y-mediated purinergic upregulations within the Fmr1 KO mouse cortex, and suggest that astrocyte purinergic signalling should be further investigated in the search for innovative FXS treatments. / Thesis / Doctor of Philosophy (PhD) / Autism spectrum disorders (ASDs) have become a serious health concern in recent years due to rapidly rising rates of diagnosis. Despite extensive research, there are still no effective treatments for these disorders of brain development. It is therefore important that we study the cellular events contributing to ASDs in order to design new therapeutic strategies. The most common inherited form of ASD is Fragile X syndrome (FXS), which is characterized by cognitive and motor disabilities, sensory hyperresponsivity, attention deficits, hyperactivity, and seizures. Using the Fmr1 knockout (KO) mouse model of FXS, recent research has shown that many of these symptoms are related to disordered communication between brain cells within the cerebral cortex; specifically, between neurons and the helper-like cells known as astrocytes. One form of cellular signalling that supports this communication is known as the purinergic signalling pathway. Collectively, this thesis work is the first to show that purinergic signalling is increased in Fmr1 KO mouse cortical astrocytes and that it impacts FXS neuronal connections. Specifically, Fmr1 KO cortical astrocytes demonstrated increased communication using purinergic signalling, due to greater expression of P2Y2 and P2Y6 purinergic receptors and altered levels of the molecules that stimulate these receptors. Activation of Fmr1 KO astrocyte P2Y receptors promoted expression of the neuronal connection-forming protein TSP-1 and stimulated additional astrocyte signalling pathways. As a result of these changes, when Fmr1 KO neurons were grown in the presence of Fmr1 KO astrocytes, they grew longer extensions and demonstrated greater activity than wildtype controls, in a manner consistent with the excitation-related symptoms of FXS. Selectively targeting P2Y2-driven purinergic pathways with drug treatments corrected this activity, thereby revealing a potential new therapeutic approach for FXS. Understanding excess astrocyte P2Y-driven purinergic communication within the brain may therefore provide a foundation for the future development of new FXS treatments.

Page generated in 0.0673 seconds