• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 39
  • 14
  • 2
  • 1
  • Tagged with
  • 130
  • 106
  • 72
  • 72
  • 72
  • 64
  • 26
  • 21
  • 19
  • 16
  • 16
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Evaluation of the thermal stability of a low-coherence interferometer for precision surface profilometry

Taudt, Ch., Baselt, T., Nelsen, B., Assmann, H., Greiner, A., Koch, E., Hartmann, P. 09 August 2019 (has links)
Manufacturing of precise structures in MEMS, semiconductors, optics and other fields requires high standards in manufacturing and quality control. Appropriate surface topography measurement technologies should therefore deliver nm accuracy in the axial dimension under typical industrial conditions. This work shows the characterization of a dispersion-encoded low-coherence interferometer for the purpose of fast and robust surface topography measurements. The key component of the interferometer is an element with known dispersion. This dispersive element delivers a controlled phase variation in relation to the surface height variation which can be detected in the spectral domain. A laboratory setup equipped with a broadband light source (200 - 1100 nm) was established. Experiments have been carried out on a silicon-based standard with height steps of 100 nm under different thermal conditions such as 293.15 K and 303.15 K. Additionally, the stability of the setup was studied over periods of 5 hours (with constant temperature) and 15 hours (with linear increasing temperature). The analyzed data showed that a height measurement of 97.99 ± 4:9nm for 293.15 K and of 101.43 ± 3:3nm for 303.15 K was possible. The time-resolved measurements revealed that the developed setup is highly stable against small thermal uctuations and shows a linear behaviour under increasing thermal load. Calibration data for the mathmatical corrections under different thermal conditions was obtained.
102

Measurement of surface topographies in the nm-range for power chip technologies by a modified low-coherence interferometer

Taudt, Ch., Baselt, T., Nelsen, B., Aßmann, H., Greiner, A., Koch, E., Hartmann, P. 29 August 2019 (has links)
This work introduces a modified low-coherence interferometry approach for nanometer surface-profilometry. The key component of the interferometer is an element with known dispersion which defines the measurement range as well as the resolution. This dispersive element delivers a controlled phase variation which can be detected in the spectral domain and used to reconstruct height differences on a sample. In the chosen setup, both axial resolution and measurement range are tunable by the choice of the dispersive element. The basic working principle was demonstrated by a laboratory setup equipped with a supercontinuum light source (Δλ = 400 ̶ 1700 nm). Initial experiments were carried out to characterize steps of 101 nm on a silicon height standard. The results showed that the system delivers an accuracy of about 11.8 nm. These measurements also served as a calibration for the second set of measurements. The second experiment consisted of the measurement of the bevel of a silicon wafer. The modified low-coherence interferometer could be utilized to reproduce the slope on the edge within the previously estimated accuracy. The main advantage of the proposed measurement approach is the possibility to collect data without the need for mechanically moving parts.
103

Two-dimensional low-coherence interferometry for the characterization of nanometer wafer topographies

Taudt, Ch., Baselt, T., Nelsen, B., Aßmann, H., Greiner, A., Koch, E., Hartmann, P. 30 August 2019 (has links)
Within this work a scan-free, low-coherence interferometry approach for surface profilometry with nm-precision is presented. The basic setup consist of a Michelson-type interferometer which is powered by a supercontinuum light-source (Δλ = 400 - 1700 nm). The introduction of an element with known dispersion delivers a controlled phase variation which can be detected in the spectral domain and used to reconstruct height differences on a sample. In order to enable scan-free measurements, the interference signal is spectrally decomposed with a grating and imaged onto a two-dimensional detector. One dimension of this detector records spectral, and therefore height information, while the other dimension stores the spatial position of the corresponding height values. In experiments on a height standard, it could be shown that the setup is capable of recording multiple height steps of 101 nm over a range of 500 µm with an accuracy of about 11.5 nm. Further experiments on conductive paths of a micro-electro-mechanical systems (MEMS) pressure sensor demonstrated that the approach is also suitable to precisely characterize nanometer-sized structures on production-relevant components. The main advantage of the proposed measurement approach is the possibility to collect precise height information over a line on a surface without the need for scanning. This feature makes it interesting for a production-accompanying metrology.
104

Development of Process Models for Multiphase Processes in the Pore Space of a Filter Cake based on 3D Information

Löwer, Erik 20 May 2022 (has links)
Reliable information about the micro-processes during filtration and dewatering of filter cakes allows more accurate statements about process development and design in any industrial application with solid-liquid separation units. Distributed particle properties such as shape, size, and material influence the formation of the porous network structure, which can show considerable local fluctuations in vertical and horizontal alignment in the cake forming apparatus. The present work relates to a wide range of particle sizes and particle shapes and presents their effects on integral, but preferably local, structural parameters of cake filtration. Current models for the relationship between particle properties and resulting porous structure remain inaccurate. Therefore, the central question focus on the model-based correlation between obtained tomographic 3D information and characteristic cake and process parameters. In combination with X-ray computed tomography and microscopy (ZEISS Xradia 510), data acquisition of the structural build-up of filter cakes is possible on a small scale (filter area 0.2 cm²) and a conventional laboratory scale (filter area 20 cm², VDI 2762 pressure nutsch). Thereby, the work focuses on structural parameters at the local level before, during, and after cake dewatering, such as porosity, coordination number, three-phase contact angle, characteristics of pores and isolated liquid regions, the liquid load of individual particles, tortuosity, and capillary length, and the corresponding spatial distributions. Seven different particle systems in the range of 20 and 500 µm, suspended in aqueous solutions with additives for contrast enhancement, served as raw materials for the filter cake formation. Image data processing from 16-bit greyscale images with a resolution of 2 to 4 µm/voxel edge length includes various operations with a two-stage segmentation to identify air, solid particles, and liquid phase, resulting in a machine learning-based automated approach. Subsequent modeling and correlation of measured parameters rely on experimentally verified quantities from mercury porosimetry, laser diffraction, dynamic image analysis, static and dynamic droplet contour analysis, as well as filtration and capillary pressure tests according to VDI guidelines. The tomography measurements provide microscopic information about the porous system, quantified using characteristic key parameters and distribution functions. By studying the cake structure concerning the local distribution of particle size and shape and the resulting porosity, segregation effects can be avoided by increasing the feed concentration of particles, whereby swarm inhibition of particles in the initial suspension strongly hinders or completely suppresses layer formation in the cake according to distributed particle properties (Publication A). In the subsequent dewatering of the filter cake to the irreducible saturation, the measurement of the local coordination number as well as the remaining liquid volumes at the particle contacts allows the determination of a discrete liquid load distribution by correlation with the respective particle volume (Publication B). The determination of the capillary length - shortest capillary for single-phase pore flow and capillary of least resistance for multiphase pore flow - provides modeling approaches for the cake formation from publication A as well as the dewatering process from publication B (Publication C). The parameter sets obtained also help to transfer and extend existing, theoretical models of multiphase pore flow to the application example of filter cake dewatering (Publication D). At the microscopic level, the measurement of the three-phase contact angle at isolated liquid volumes within the porous matrix provides a deeper understanding of the macroscopic models from publications C and D (Publication E).:List of Figures List of Tables Notation 1 Introduction 2 Multiphase Processes in Porous Media 2.1 Cake Filtration and Single Phase Porous Media Flow 2.2 Cake Dewatering 2.2.1 Particle Surface Wettability 2.2.2 Capillarity in Porous Media 2.2.3 Static Capillary Pressure 2.2.4 Dynamic Capillary Pressure 3 Acquisition of 3D Information of Porous Media 3.1 Absorption and Scattering of X-rays 3.2 X-ray Microscopy 3.2.1 Image Acquisition 3.2.2 Image Reconstruction 3.2.3 Image Quality and Artifacts 3.3 Image Post-Processing 3.3.1 Image Enhancement 3.3.2 Segmentation and Thresholding 3.3.3 Processing Binary Images 3.4 Image Measurement 4 Materials and Methods 4.1 The Solid Phase 4.2 The Liquid Phase 4.3 Suspension Stability 4.4 Experimental Design and Down-Scale for Tomography Measurements 4.5 Experimental Characterization of Filtration and Dewatering Properties 4.5.1 Cake Filtration 4.5.2 Cake Dewatering (Capillary Pressure Measurements) 5 Conclusion and Outlook Literature Publications A to E Appendix
105

Identification and characterisation of novel zebrafish brain development mutants obtained by large-scale forward mutagenesis screening

Klisa, Christiane 09 January 2004 (has links)
Developmental biology adresses how cells are organised into functional structures and eventually into a whole organism. It is crucial to understand the molecular basis for processes in development, by studying the expression and function of relevant genes and their relationship to each other. A gene function can be studied be creating loss-of-function situations, in which the change in developmental processes is examined in the absense of a functional gene product, or in gain-of-function studies, where a gene product is either intrinsically overproduced or ectopically upregulated. One approach for a loss-of-function situation is the creation of specific mutants in single genes, and the zebrafish (Danio rerio) has proven to be an excellent model organism for this purpose. In this thesis, I report on two forward genetic screens performed to find new mutants affecting brain development, in particular mutants defective in development and function of the midbrain-hindbrain boundary (MHB), an organiser region that patterns the adjacent brain regions of the midbrain and the hindbrain. In the first screen, I could identify 10 specific mutants based on morphology and the analysis of the expression patterns of lim1 and fgf8, genes functioning as early neuronal markers and as a patterning gene, respectively. Three of these mutants lacked an MHB, and by complementation studies, I identified these mutants as being defective in the spg locus. The second screen produced 35 new mutants by screening morphologically and with antibodies against acetylated Tubulin, which marks all axonal scaffolds, and anti-Opsin, which is a marker for photoreceptors in the pineal gland. According to their phenotype, I distributed the mutant lines into 4 phenotypic subgroups, of which the brain morphology group with 18 mutant lines was studied most intensively. In the last part of my thesis, I characterise one of these brain morphology mutants, broken heart. This mutant is defective in axonal outgrowth and locomotion, and shows a striking reduction of serotonergic neurons in the epiphysis and in the raphe nuclei in the hindbrain, structures involved in serotonin and melatonin production. Studies in other model organisms suggested a role of factors from the floor plate and the MHB in induction of the serotonergic neurons in the hindbrain, and using broken heart, I show that Fgf molecules such as Fgf4 and Fgf8 can restore partially the loss of serotonergic neurons in the mutant. I conclude that forward genetic screens are an invaluable tool to generate a pool of mutations in specific genes, which can be used to dissect complex processes in development such as brain development.
106

Untersuchung von Stäben und Gelegen aus rezyklierten Carbonfasern

Baumgärtel, Enrico 10 November 2022 (has links)
Die Wiederverwendung von Carbonfasern gewinnt angesichts steigender Ressourcenknappheit und Klimaschutzbestrebungen zunehmend an Bedeutung. Insbesondere die ganzheitliche Betrachtung von geschlossenen Stoffkreisläufen erreicht im Bauwesen einen immer höheren Stellenwert. Durch das Aufbereiten und In-Form-Bringen von Carbonfasern zu Halbzeugen wird der noch offene Stoffkreislauf geschlossen. Aufgrund von unterschiedlichen technologischen Hürden unterliegt die konstante Herstellung von Stäben und Gelegen aus recycelten Carbonfasern bei gleichbleibender Qualität noch großen Schwankungen. Ziel der Forschung ist die Untersuchung und Charakterisierung von Carbonstäben und Carbongelegen aus recycelten Fasern im Vergleich zu Halbzeugen aus neuen Carbonfasern.
107

Optimization of performance and reliability of HZO-based capacitors for ferroelectric memory applications

Materano, Monica 04 August 2022 (has links)
In an era in which the amount of produced and stored data continues to exponentially grow, standard memory concepts start showing size, power consumption and costs limitation which make the search for alternative device concepts essential. Within a context where new technologies such as DRAM, magnetic RAM, resistive RAM, phase change memories and eFlash are explored and optimized, ferroelectric memory devices like FeRAM seem to showcase a whole range of properties which could satisfy market needs, offering the possibility of creating a non-volatile RAM. In fact, hafnia and zirconia-based ferroelectric materials opened up a new scenario in the memory technology scene, overcoming the dimension scaling limitations and the integration difficulties presented by their predecessors perovskite ferroelectrics. In particular, HfₓZr₁₋ₓO₂ stands out because of high processing flexibility and ease of integration in the standard semiconductor industry process flows for CMOS fabrication. Nonetheless, further understanding is necessary in order tocorrelate device performance and reliability to the establishment of ferroelectricity itself. The aim of this work is to investigate how the composition of the ferroelectric oxide, together with the one of the electrode materials influence the behavior of a ferroelectric RAM. With this goal, different process parameters and reliability properties are considered and an analysis of the polarization reversal is performed. Starting from undoped hafnia and zirconia and subsequently examining their intermixed system, it is shown how surface/volume energy contributions, mechanical stress and oxygen-related defects all concur in the formation of the ferroelectric phase. Based on the process optimization of an HfₓZr₁₋ₓO₂-based capacitor performed within these pages, a 64 kbit 1T1C FeRAM array is demonstrated by Sony Semiconductor Solutions Corporation which shows write voltage and latency as low as 2.0 V and 16 ns, respectively. Outstanding retention and endurance performances are also predicted, which make the addressed device an extremely strong competitor in the semiconductor scene.
108

Ternäre Oxide zur Passivierung von GaN-basierten elektronischen Bauelementen

Seidel, Sarah 12 September 2023 (has links)
In der Arbeit wurden die zwei ternären Oxide GdScO3 und AlTiOx strukturell und elektrisch charakterisiert und in laterale AlGaN/GaN-MISHEMTs integriert. GdScO3 wächst hexagonal und epitaktisch bei einer Abscheidung mittels PLD bei 700°C auf einer AlGaN/GaN Heterostruktur auf. Die demonstrierten MISHEMTs zeigen einen deutlich verringerten Gate-Leckstrom. Zeit- und beleuchtungsabhängige Drain-Strom Messungen im ausgeschaltetem Transistor weisen allerdings auf photoinduzierte Trapzustände mit langer Lebensdauer im Oxid hin, die den Drain-Leckstrom limitieren. Die AlTiOx Mischoxide wurden mittels ALD abgeschieden. Dabei wurde die Stöchiometrie über das Zyklenverhältnis zwischen Al2O3 und TiO2 variiert. Es konnte gezeigt werden, dass der Brechungsindex, die Permittivität, die Bandlücke und das Bandalignment zum GaN über die Stöchiometrie eingestellt werden können. Durch die Implementierung eines high-k last Prozesses konnten schaltbare MISHEMTs prozessiert werden. Durch die Simulation der Bandstruktur konnten die Einsatzspannungsverschiebung und ein Maximum des Drain-Stroms im ausgeschaltetem Zustand über die Ermittlung der Barrierendicke für Elektronen erklärt werden. Für eine Passivierung mit TiO2 wurde ein um 2,5 Größenordnungen reduzierter Drain-Leckstrom bei gleichzeitig nur minimal verschobener Einsatzspannung gemessen.:Inhaltsverzeichnis 1 Einleitung 7 2 Grundlagen 9 2.1 Der III-V Halbleiter Galiumnitrid . . . . . . . . . . . . . . . . . . . . . 9 2.2 Der Hetero-Feldeffekttransisor . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Performance Einschränkungen am unpassivierten HFET . . . . . . . . 14 2.4 Gatedielektrika für MISHEMTs . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 Verwendete Dielektrika . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.2 Limitationen in MISHEMTs . . . . . . . . . . . . . . . . . . . . 23 2.5 Atomlagenabscheidung . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.1 Der ALD-Prozess . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.2 Abscheidung ternärer Verbindungen . . . . . . . . . . . . . . . . 27 3 Charakterisierungsmethoden 31 3.1 Kapazitäts-Spannungs-Messungen an MIS-Kondensatoren . . . . . . . . 31 3.2 Photo-assisted Kapazitäts-Spannungsmessungen . . . . . . . . . . . . . 34 3.3 Messungen am Transistor . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Probenherstellung 39 4.1 Atomlagenabscheidung . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Prozessoptimierung am HFET . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.1 Mesa-Ätzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.2 Formierung der ohmschen Kontakte . . . . . . . . . . . . . . . . 47 4.3 Strukturierung der Oxide . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5 Gadoliniumscandiumoxid 53 5.1 Strukturelle Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 PhotoCV-Messungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 MISHEMT mit GdScO3 . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.4 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6 Aluminium-Titanoxid Mischschichten 65 6.1 Voruntersuchungen am TiO2 . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2 Strukturelle Charakterisierung an AlTiOx . . . . . . . . . . . . . . . . 67 6.2.1 Stöchiometrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.2.2 Kristallisationsverhalten . . . . . . . . . . . . . . . . . . . . . . 70 6.3 Bestimmung des Bandalignments . . . . . . . . . . . . . . . . . . . . . 72 6.3.1 UV/Vis Messungen . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.2 Röntgenphotoelektronenspektroskopie . . . . . . . . . . . . . . . 74 6.3.3 Bandalignment zum GaN . . . . . . . . . . . . . . . . . . . . . 77 6 Inhaltsverzeichnis 6.4 Elektrische Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . 79 6.4.1 CV-Messungen . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.4.2 IV-Messungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.4.3 PhotoCV-Messungen . . . . . . . . . . . . . . . . . . . . . . . . 82 6.5 Zusammenfassung der AlTiOx Charakterisierung . . . . . . . . . . . . . 86 6.6 MISHEMTs mit AlTiOx . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.6.1 high-k first MISHEMTs . . . . . . . . . . . . . . . . . . . . . . . 88 6.6.2 High-k last MISHEMTs . . . . . . . . . . . . . . . . . . . . . . . 89 6.7 Einordnung der Transistorergebnisse . . . . . . . . . . . . . . . . . . . 94 7 Zusammenfassung 99 Anhang 103 Abkürzungsverzeichnis 111 Symbolverzeichnis 113 Abbildungsverzeichnis 115 Tabellenverzeichnis 121 Literatur 123 Publikationen 141 Danksagung 143
109

Statistical determination of atomic-scale characteristics of nanocrystals based on correlative multiscale transmission electron microscopy

Neumann, Stefan 21 December 2023 (has links)
The exceptional properties of nanocrystals (NCs) are strongly influenced by many different characteristics, such as their size and shape, but also by characteristics on the atomic scale, such as their crystal structure, their surface structure, as well as by potential microstructure defects. While the size and shape of NCs are frequently determined in a statistical manner, atomic-scale characteristics are usually quantified only for a small number of individual NCs and thus with limited statistical relevance. Within this work, a characterization workflow was established that is capable of determining relevant NC characteristics simultaneously in a sufficiently detailed and statistically relevant manner. The workflow is based on transmission electron microscopy, networked by a correlative multiscale approach that combines atomic-scale information on NCs obtained from high-resolution imaging with statistical information on NCs obtained from low-resolution imaging, assisted by a semi-automatic segmentation routine. The approach is complemented by other characterization techniques, such as X-ray diffraction, UV-vis spectroscopy, dynamic light scattering, or alternating gradient magnetometry. The general applicability of the developed workflow is illustrated on several examples, i.e., on the classification of Au NCs with different structures, on the statistical determination of the facet configurations of Au nanorods, on the study of the hierarchical structure of multi-core iron oxide nanoflowers and its influence on their magnetic properties, and on the evaluation of the interplay between size, morphology, microstructure defects, and optoelectronic properties of CdSe NCs.:List of abbreviations and symbols 1 Introduction 1.1 Types of nanocrystals 1.2 Characterization of nanocrystals 1.3 Motivation and outline of this thesis 2 Materials and methods 2.1 Nanocrystal synthesis 2.1.1 Au nanocrystals 2.1.2 Au nanorods 2.1.3 Multi-core iron oxide nanoparticles 2.1.4 CdSe nanocrystals 2.2 Nanocrystal characterization 2.2.1 Transmission electron microscopy 2.2.2 X-ray diffraction 2.2.3 UV-vis spectroscopy 2.2.3.1 Au nanocrystals 2.2.3.2 Au nanorods 2.2.3.3 CdSe nanocrystals 2.2.4 Dynamic light scattering 2.2.5 Alternating gradient magnetometry 2.3 Methodical development 2.3.1 Correlative multiscale approach – Statistical information beyond size and shape 2.3.2 Semi-automatic segmentation routine 3 Classification of Au nanocrystals with comparable size but different morphology and defect structure 3.1 Introduction 3.1.1 Morphologies and structures of Au nanocrystals 3.1.2 Localized surface plasmon resonance of Au nanocrystals 3.1.3 Motivation and outline 3.2 Results 3.2.1 Microstructural characteristics of the Au nanocrystals 3.2.2 Insufficiency of two-dimensional size and shape for an unambiguous classification of the Au nanocrystals 3.2.3 Statistical classification of the Au nanocrystals 3.2.4 Advantage of a multidimensional characterization of the Au nanocrystals 3.2.5 Estimation of the density of planar defects in the Au nanoplates 3.3 Discussion 3.4 Conclusions 4 Statistical determination of the facet configurations of Au nanorods 4.1 Introduction 4.1.1 Growth mechanism and facet formation of Au nanorods 4.1.2 Localized surface plasmon resonance of Au nanorods 4.1.3 Catalytic activity of Au nanorods 4.1.4 Motivation and outline 4.2 Results 4.2.1 Statistical determination of the size and shape of the Au nanorods 4.2.2 Microstructural characteristics and facet configurations of the Au nanorods 4.2.3 Statistical determination of the facet configurations of the Au nanorods 4.3 Discussion 4.4 Conclusions 5 Influence of the hierarchical architecture of multi-core iron oxide nanoflowers on their magnetic properties 5.1 Introduction 5.1.1 Phase composition and phase distribution in iron oxide nanoparticles 5.1.2 Magnetic properties of iron oxide nanoparticles 5.1.3 Mono-core vs. multi-core iron oxide nanoparticles 5.1.4 Motivation and outline 5.2 Results 5.2.1 Phase composition, vacancy ordering, and antiphase boundaries 5.2.2 Arrangement and coherence of individual cores within the iron oxide nanoflowers 5.2.3 Statistical determination of particle, core, and shell size 5.2.4 Influence of the coherence of the cores on the magnetic properties 5.3 Discussion 5.4 Conclusions 6 Interplay between size, morphology, microstructure defects, and optoelectronic properties of CdSe nanocrystals 6.1 Introduction 6.1.1 Polymorphism in CdSe nanocrystals 6.1.2 Optoelectronic properties of CdSe nanocrystals 6.1.3 Nucleation, growth, and coarsening of CdSe nanocrystals 6.1.4 Motivation and outline 6.2 Results 6.2.1 Influence of the synthesis temperature on the optoelectronic properties of the CdSe nanocrystals 6.2.2 Microstructural characteristics of the CdSe nanocrystals 6.2.3 Statistical determination of size, shape, and amount of oriented attachment of the CdSe nanocrystals 6.3 Discussion 6.4 Conclusions 7 Summary and outlook References Publications
110

On the Complexity and Expressiveness of Description Logics with Counting

Baader, Franz, De Bortoli, Filippo 20 June 2022 (has links)
Simple counting quantifiers that can be used to compare the number of role successors of an individual or the cardinality of a concept with a fixed natural number have been employed in Description Logics (DLs) for more than two decades under the respective names of number restrictions and cardinality restrictions on concepts. Recently, we have considerably extended the expressivity of such quantifiers by allowing to impose set and cardinality constraints formulated in the quantifier-free fragment of Boolean Algebra with Presburger Arithmetic (QFBAPA) on sets of role successors and concepts, respectively. We were able to prove that this extension does not increase the complexity of reasoning. In the present paper, we investigate the expressive power of the DLs obtained in this way, using appropriate bisimulation characterizations and 0–1 laws as tools to differentiate between the expressiveness of different logics. In particular, we show that, in contrast to most classical DLs, these logics are no longer expressible in first-order predicate logic (FOL), and we characterize their first-order fragments. In most of our previous work on DLs with QFBAPA-based set and cardinality constraints we have employed finiteness restrictions on interpretations to ensure that the obtained sets are finite, as required by the standard semantics for QFBAPA. Here we dispense with these restrictions to ease the comparison with classical DLs, where one usually considers arbitrary models rather than finite ones, easier. It turns out that doing so does not change the complexity of reasoning.

Page generated in 0.099 seconds