• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 8
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Synthesis and Studies of Wide-Band Capturing BODIPY-Fullerene Based Donor-Acceptor Systems

Shao, Shuai 05 1900 (has links)
Artificial photosynthesis is the process, which mimics the natural photosynthesis process in order to convert solar energy to chemical energy. This process can be separated into four parts, which are antenna system, reaction center, water oxidation center, and proton reduction center. If we only focus on the ‘antenna system and reaction center' modules, expanding the absorption band in antenna system and generating long-lived charge separated state in reaction center are two fantastic strategies to design the molecules in order to improve the efficiency of the artificial photosynthesis process. In the first work of this dissertation, mono-18-crown-6 and mono-ammonium binding strategy was used to connect BODIPY- C60 supramolecular based donor–acceptor conjugates. The meso- position of BODIPY was modified by benzo-18-crown-6, and the 3, 5 methyl positions were replaced by two styryl groups, which covered additional donor (triphenylamine or 10-methylphenothiazine). The acceptor is a fulleropyrrolidine derivative, which included an ethyl ammonium cation. The absorbance wavelengths of the donor covered 300-850 nm, which is the visible/near IR region (wide band capturing). The ultrafast charge separation and relatively slow charge recombination was found from femtosecond transient absorption study. Next, a ‘two point' bis-18-crown-6 and bis-ammonium binding strategy was utilized to link BODIPY- C60 supramolecular based donor–acceptor conjugates. In this case, the meso- position of the BODIPY was modified by a secondary donor (triphenylamine, phenothiazine, or ferrocene). And the 3, 5 methyl positions were replaced by two styryl groups, which included benzo-18-crown-6. The acceptor (fulleropyrrolidine) was functionalized by bis-alky ammonium cations. The absorbance/ fluorescence emission titration and computational studies supported that the ‘two-point' strategy has stronger binding than ‘one-point' strategy. The relatively slow charge separation was found in these donor-acceptor conjugates. To extend the second work, a pristine BODIPY was linked to the meso- position of the BODIPY-bis-benzo-18-crown-6. When the acceptor (C60-bis- ammonium) was added to the system, a sequential energy transfer (EnT) followed by electron transfer (ET) process was performed. The energy transfer was found from absorbance/ fluorescence emission studies, and the photoinduced electron transfer was observed from femtosecond and nanosecond transient absorption study. This is a great mode to mimic the ‘antenna-reaction center' events of natural photosynthesis. In the last work of this dissertation, triplet sensitizers (I2BODIPY and I2azaBODIPY) covalently linked with a C60 to form the donor-acceptor system. In this work, triplet charge separated state (long-lived charge separated state) was expected. According to the femtosecond transient absorption studies, we observed the singlet charge separation was faster than the intersystem crossing process, that was the reason that only singlet charge separated state was found for I2BODIPY-C60, and no electron transfer was found for I2 azaBODIPY-C60.
12

DESIGN AND PHOTOCHEMICAL STUDIES OF ZEOLITE-BASED ARTIFICIAL PHOTOSYNTHETIC SYSTEMS

Lee, Hyunjung January 2002 (has links)
No description available.
13

Multimetallic Supramolecular Complexes: Synthesis, Characterization, Photophysical Studies and Applications in Solar Energy Utilization and Photodynamic Therapy

Miao, Ran 29 April 2008 (has links)
This thesis describes the study of a series of multimetallic supramolecules containing varied metals and ligands, synthesized by a building block method and characterized by mass spectrometry, electronic absorption spectroscopy, and electrochemistry. Incorporating different functional units into complex systems allowed these multimetallic supramolecules to perform various light activated tasks including DNA cleavage and hydrogen generation from water. The complex [({(bpy)₂Os(dpp)}₂Ru)₂(dpq)](PF₆)<sub>12</sub> and [{(bpy)₂M(dpp)}₂Ru(BL)PtCl₂](PF₆)₆ were synthesized (M = Os<sup>II</sup> or Ru<sup>II</sup>; BL = dpp or dpq; bpy = 2,2<sup>'</sup>-bipyridine, dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline). The building blocks displayed varied electrochemical properties upon complexation. The bridging ligands dpp and dpq display their reduction potentials shifted to less negative values when they changed from monochelating to bischelating. The electronic absorption spectra of the multimetallic systems displayed transitions of each contributing chromophore, with overlapping metal to ligand charge transfer (MLCT) transitions in visible region of spectrum. Spectroelectrochemistry revealed the nature of MLCTs and helped to identify fingerprint features of complex supramolecules. Photophysical measurements include emission spectroscopy with quantum yield measurements and emission lifetime measurements. Photophysical data provided detailed information to aid in developing an understanding of excited state properties of these complexes. Supported by the electrochemical data and spectroelectrochemistry, the hexametallic complex was suggested to have a HOMO localizing in the peripheral Os and a LUMO localizing in the central dpq, separating by a Ru energy barrier. This research systematically investigated photophysical properties of some building blocks and the mixed-metal, mixed-ligand supramolecules constructed by a variety of building blocks coupling light absorbing subunits to a reactive Pt metal center. Preliminary studies suggested [{(bpy)₂Ru(dpp)}₂Ru(dpq)PtCl₂](PF₆)₆ was a photocatalyst for H2 production from water in the presence of a sacrificial electron donor. The complex [{(bpy)₂Ru(dpp)}₂Ru(dpq)PtCl₂](PF₆)₆ had been studied for its catalytic ability in generating hydrogen and was found to have 34 product turnovers after 3 h photolysis. Photolysis and gel electrophoresis revealed that the tetrametallic complexes were able to bind to and then photocleave DNA through an oxygen mediated mechanism. The independence of ionic strength variation when [{(bpy)₂Ru(dpp)}₂Ru(dpp)PtCl₂](PF₆)₆ interacted with DNA, suggested the covalent interaction nature of the complex. These results suggest future work on understanding the excited state properties of supramolecular complexes is suggested. The designs of future photocatalysts for hydrogen production from water and anticancer photodynamic therapy drugs are also proposed. / Ph. D.
14

Dynamique de recombinaison radiative dans les nanofils InGaN/GaN : étude détaillée de la photoluminescence

Cardin, Vincent 10 1900 (has links)
L'étude de l'émission intégrée et résolue en temps de quatre configurations d'hétérostructures quantiques de type points-dans-un-fil d'InGaN/GaN nous a permis de déterminer la nature de la localisation et du mécanisme de recombinaison des porteurs de charge dans ces nanofils. Des mesures de comptage de photon unique correlés en temps (TCSPC) étendues sur une plage temporelle allant de 210 à 26000ns ont permis d'observer un comportement fortement non exponentiel de l'émission que nous avons déterminé être une loi de puissance. Nous avons trouvé que le temps de vie de l'émission diminue rapidement avec l'énergie d'émission. Par contre, l'observation d'un effet de la puissance d'excitation sur le temps de vie semble indiquer qu'à une énergie d'émission ne soit pas associée une seule dynamique d'émission à long temps. En utilisant une densité d'excitation laser de seulement quelques dizaines de watt par cm au carré, nous avons pu démontrer, en régime non perturbatif, que le profil des spectres d'émission intégrés en temps ainsi que la dynamique de l'évolution temporelle de l'émission étaient tout à fait compatibles avec une recombinaison radiative centrée sur une distribution de nano-agrégats riches en indium naturellement formés lors de la croissance des nanofils par MBE assistée par plasma. Cette conclusion est supportée par notre incapacité à observer l'effet Stark à confinement quantique, le succès d'un modèle de séparation de charges parfaitement compatible avec l'image des nano-agrégats d'indium et, finalement, par l'observation d'une émission principalement isotrope en polarisation. / We have performed time-integrated and time-resolved photoluminescence measurements on four different configurations of InGaN/GaN dot-in-a-wire heterostructures in order to further our understanding of the localization and radiative recombination mechanism involved in the process of emission. Time correlated single photon counting (TCSPC) measurements from 100 ns to 26000 ns have allowed us to observe a strong non-exponential decay which follows a power law on long time scale. The characteristic exponent of this power law is strongly correlated with the emission energy, causing the life-time of the emission to fall rapidly with increasing of its energies. The observation that the excitation power has an effect on the life-time shows that other factors such as the growth conditions must be involved in the coupling between life-time and energy. Using a low power density of a few tens of watts per cm squared, we have shown, in a non perturbative regime, that the shape of the time-integrated spectra and the dynamics of the time-resolved decay curves were consistent with a radiative recombination process centered on In-rich nanocluster. These nanoclusters naturally occur in the embedded InGaN inclusions during the growth by plasma-assisted MBE. This conclusion is supported by the absence of Quantum confined Stark effect. The success of a charge separation model is perfectly consistent with the emission centered on In-rich nanocluster and the observation of a quasiperfect isotropic emission. / Mesures effectuées dans le laboratoire de caractérisation optique des semi-conducteurs du Prof. Richard Leonelli du département de physique de l'université de Montréal. Les nanofils d'InGaN/GaN ont été fournis par le groupe du Prof. Zetian Mi du département de génie électrique et informatique de l'université McGill.
15

Dynamique de recombinaison radiative dans les nanofils InGaN/GaN : étude détaillée de la photoluminescence

Cardin, Vincent 10 1900 (has links)
Mesures effectuées dans le laboratoire de caractérisation optique des semi-conducteurs du Prof. Richard Leonelli du département de physique de l'université de Montréal. Les nanofils d'InGaN/GaN ont été fournis par le groupe du Prof. Zetian Mi du département de génie électrique et informatique de l'université McGill. / L'étude de l'émission intégrée et résolue en temps de quatre configurations d'hétérostructures quantiques de type points-dans-un-fil d'InGaN/GaN nous a permis de déterminer la nature de la localisation et du mécanisme de recombinaison des porteurs de charge dans ces nanofils. Des mesures de comptage de photon unique correlés en temps (TCSPC) étendues sur une plage temporelle allant de 210 à 26000ns ont permis d'observer un comportement fortement non exponentiel de l'émission que nous avons déterminé être une loi de puissance. Nous avons trouvé que le temps de vie de l'émission diminue rapidement avec l'énergie d'émission. Par contre, l'observation d'un effet de la puissance d'excitation sur le temps de vie semble indiquer qu'à une énergie d'émission ne soit pas associée une seule dynamique d'émission à long temps. En utilisant une densité d'excitation laser de seulement quelques dizaines de watt par cm au carré, nous avons pu démontrer, en régime non perturbatif, que le profil des spectres d'émission intégrés en temps ainsi que la dynamique de l'évolution temporelle de l'émission étaient tout à fait compatibles avec une recombinaison radiative centrée sur une distribution de nano-agrégats riches en indium naturellement formés lors de la croissance des nanofils par MBE assistée par plasma. Cette conclusion est supportée par notre incapacité à observer l'effet Stark à confinement quantique, le succès d'un modèle de séparation de charges parfaitement compatible avec l'image des nano-agrégats d'indium et, finalement, par l'observation d'une émission principalement isotrope en polarisation. / We have performed time-integrated and time-resolved photoluminescence measurements on four different configurations of InGaN/GaN dot-in-a-wire heterostructures in order to further our understanding of the localization and radiative recombination mechanism involved in the process of emission. Time correlated single photon counting (TCSPC) measurements from 100 ns to 26000 ns have allowed us to observe a strong non-exponential decay which follows a power law on long time scale. The characteristic exponent of this power law is strongly correlated with the emission energy, causing the life-time of the emission to fall rapidly with increasing of its energies. The observation that the excitation power has an effect on the life-time shows that other factors such as the growth conditions must be involved in the coupling between life-time and energy. Using a low power density of a few tens of watts per cm squared, we have shown, in a non perturbative regime, that the shape of the time-integrated spectra and the dynamics of the time-resolved decay curves were consistent with a radiative recombination process centered on In-rich nanocluster. These nanoclusters naturally occur in the embedded InGaN inclusions during the growth by plasma-assisted MBE. This conclusion is supported by the absence of Quantum confined Stark effect. The success of a charge separation model is perfectly consistent with the emission centered on In-rich nanocluster and the observation of a quasiperfect isotropic emission.
16

Photocatalytic hydrogen production over layered materials

Jia, Tiantian January 2014 (has links)
The technology of semiconductor-based photocatalytic water splitting to produce hydrogen using solar energy has been considered as one of the most important approaches to solve the world energy crisis. Therefore, the development of the effective semiconductor photocatalysts has undergone considerable research. However, the traditional photocatalysts suffer from the negative effects from rapid charge recombination, which reduces the excited charges by emitting light or generating phonons. Efficient charge separation and fast charge transport, avoiding any bulk/surface recombination, are fundamentally important for photocatalytic hydrogen generation through water splitting. Here, we have introduced assembled layered materials as photocatalyst systems with their unique physicochemical properties to realize the effective charge separation and high photocatalytic activity. Using graphene as a two-dimensional supporting matrix, we have succeeded in selective anchoring of semiconductor and metal nanoparticles as separate catalytically active sites on the graphene surface. The ability of graphene to capture, transfer and store electrons and its potential to serve as a conductive support are demonstrated. The TiO<sub>2</sub> semiconductor/metals nanocrystals-graphene ensemble makes it possible to carry out selective catalytic processes at the separate sites and provides the potentials for applications in water splitting reactions. After demonstrating the positive role of graphene in such photocatalytic system, we then fabricate a simple but highly cooperative ensemble with CdS and MoS<sub>2</sub> nanocrystals dispersed on graphene sheets. It is demonstrated that CdS nanocrystals can also capture visible light energy and facilitate excited electron transfer to MoS<sub>2</sub> (as metal substituent) for catalytic hydrogen production via the 2-D graphene which plays a key role as an efficient electron mediator. Hexagonal multilayer MoS<sub>2</sub> with a layered structure in this system serves to provide active sites for hydrogen evolution by its exposed Mo edges. Hence, multilayer MoS<sub>2</sub> is an ideal cocatalyst of semiconductors for hydrogen generation. This crystalline-layered structure also shows semiconducting properties, however, its characteristic indirect band gap displays a poor light capture and emission ability with excited electrons and holes with different momentum. In contrast, single layer MoS<sub>2</sub> shows a direct band gap behavior. Our studies have clearly shown that single layer MoS<sub>2</sub> prepared with lithium intercalation indeed displays encouraging results in hydrogen evolution due to the direct band gap and quantum confinement effects. In addition, the exfoliated single layer MoS<sub>2</sub> exhibits extraordinary enhanced activity and stability in combination with the Eosin Y sensitized system when compared to those of multilayer MoS<sub>2</sub> and bulk MoS<sub>2</sub> counterparts, which is attributed to the improvement of the density of surface active sites with stronger adsorption for the Eosin Y molecules on the single layer MoS<sub>2</sub>. In addition, this multifunctional catalyst on graphene sheet can also create adsorption sites on a defective basal surface of single layer MoS<sub>2</sub> through adsorption of Eosin Y where electron transfer from photoexcited Eosin Y molecule to graphene via the 2-D MoS<sub>2</sub> mainly takes place. Thus, the photo-generated electrons are then effectively transported to the exposed active sites of MoS<sub>2</sub> for the proton reduction to hydrogen molecule. It is believed the above novel assembled molecular layered systems may be applicable for a wide range of catalytic,photocatalytic and electrocatalytic reactions.
17

Exploring Electron Transfer Dynamics of Novel Dye Sensitized Photocathodes : Towards Solar Cells and Solar Fuels

Zhang, Lei January 2016 (has links)
The design of dyes for NiO-based dye-sensitized solar cells (DSSCs) has drawn attention owing to their potential applications in photocatalysis and because they are indispensable for the development of tandem dye-sensitized solar cells. The understanding of the electron transfer mechanisms and dynamics is beneficial to guide further dye design and further improve the performance of photocathode in solar cells and solar fuel devices. Time-resolved spectroscopy techniques, especially femtosecond and nanosecond transient absorption spectroscopy, supply sufficient resolution to get insights into the charge transfer processes in p-type dye sensitized solar cell and solar fuel devices. In paper I-V, several kinds of novel organic “push-pull” and inorganic charge transfer dyes for sensitization of p-type NiO, were systematically investigated by time-resolved spectroscopy, and photo-induced charge transfer dynamics of the organic/inorganic dyes were summarized. The excited state and reduced state intermediates were investigated in solution phase as references to confirm the charge injection and recombination on the NiO surface. The charge recombination kinetics is remarkably heterogeneous in some cases occurring on time scales spanning at least six orders of magnitude even for the same dye. In this thesis, we also proposed a novel concept of solid state p-type dye sensitized solar cells (p-ssDSSCs) for the first time (paper VI), using an organic dye P1 as sensitizer on mesoporous NiO and phenyl-C61-butyric acid methyl ester (PCBM) as electron conductor. Femtosecond and nanosecond transient absorption spectroscopy gave evidence for sub-ps hole injection from excited P1 to NiO, followed by electron transfer from P1●- to PCBM. The p-ssDSSCs device showed an impressive 620 mV open circuit photovoltage. Chapter 6 (paper VII) covers the study of electron transfer mechanisms in a covalently linked dye-catalyst (PB-2) sensitized NiO photocathode, towards hydrogen producing solar fuel devices. Hole injection from excited dye (PB-2*) into NiO VB takes place on dual time scales, and the reduced PB-2 (PB-2●-) formed then donates an electron to the catalyst unit.  The subsequent regeneration efficiency of PB-2 by the catalyst unit (the efficiency of catalyst reduction) is determined to ca. 70%.
18

Yang-Mills Theory in Gauge-Invariant Variables and Geometric Formulation of Quantum Field Theories

Slizovskiy, Sergey January 2010 (has links)
In Part I we are dealing with effective description of Yang-Mills theories based on gauge-invarint variables. For pure Yang-Mills we study the spin-charge separation varibles. The dynamics in these variables resembles the Skyrme-Faddeev model. Thus the spin-charge separation is an important intermediate step between the fundamental Yang-Mills theory and the low-energy effective models, used to model the low-energy dynamics of gluons. Similar methods may be useful for describing the Electroweak sector of the Standard Model in terms of gauge-invariant field variables called supercurrents. We study the geometric structure of spin-charge separation in 4D Euclidean space (paper III) and elaborate onconnection with gravity toy model. Such reinterpretation gives a way to see how effective flat background metric is created in toy gravity model by studying the appearance of dimension-2 condensate in the Yang-Mills (paper IV). For Electroweak theory we derive the effective gauge-invariant Lagrangian by doing the Kaluza-Klein reduction of higher-dimensional gravity with 3-brane, thus making explicit the geometric interpretation for gauge-invariant supercurrents. The analogy is then made more precise in the framework of exact supergravity solutions. Thus, we interpret the Higgs effect as spontaneous breaking of Kaluza-Klein gauge symmetry and this leads to interpretation of Higgs field as a dilaton (papers I and II). In Part II of the thesis we study rather simple field theories, called “geometric” or “instantonic”. Their defining property is exact localization on finite-dimensional spaces – the moduli spaces of instantons. These theories allow to account exactly for non-linearity of space of fields, in this respect they go beyond the standard Gaussian perturbation theory. In paper V we show how to construct a geometric theory of chiral boson by embedding it into the geometric field theory. In Paper VI we elaborate on the simplest geometric field theory – the supersymmetric Quantum Mechanics and construct new non-perturbative topological observables that have a transparent meaning both in geometric and in the Hamiltonian formalisms. In Paper VII we are motivated by making perturbations away from the simple instantonic limit. For that we need to carefully define the observables that are quadratic in momenta and develop the way to compute them in geometric framework. These correspond geometrically to bivector fields (or, in general, the polyvector fields). We investigate the local limit of polyvector fields and compare the geometric calculation with free-field approach.
19

Dynamics, Ionization and Charge Separation in Superheated Metastable Water / Dynamik, Ionisation und Ladungstrennung in überhitzten metastabilem Wasser

Vöhringer-Martinez, Esteban 03 July 2008 (has links)
No description available.
20

An Investigation of Electric Fields in Sandstorms

Rahman, Mustafa M. 12 1900 (has links)
Sandstorms are frequently accompanied by intense electric fields and lightning. In a very narrow region close to the ground, sand particles undergo a charge exchange during which larger-sized sand grains become positively charged and smaller-sized sand grains become negatively charged and then all particles become suspended by the turbulent fluid motion. Although the association of intense electric fields with sandstorms has long been observed, the mechanism that causes these intense electric fields has not yet been described. Here, we hypothesize that differently sized sand particles are differentially transported by turbulence in the flow, resulting in a large-scale charge separation and a consequential large-scale electric field. To confirm our hypothesis, we combined a large-eddy simulation framework comprising a turbulent atmospheric boundary layer and movement of sand particles with an electrostatic Gauss law to investigate the physics of the electric fields in sandstorms. We varied the strength of the sandstorm from weak to strong as parametrized by the number density of the entrained sand particles. Our simulations reproduced observational measurements of both mean and root mean squared fluctuation values of the electric field. Our results allowed us to propose a law in which the electric field scales to two-thirds of the power of the concentration of the sand particles in weak-to-medium strength sandstorms. The underlying approach to simulate the solid particle-laden flow is Eulerian-Eulerian in which the particles are characterized by statistical descriptors. To explore the essential physics of the electric field generation in a sandstorm, we model the high-Reynolds-number atmospheric boundary-layer (ABL) using two different canonical turbulent flows: one model is that of a turbulent boundary-layer (TBL), and the second one is that of a turbulent half-channel flow. For the particle phase, the direct quadrature method of moments (DQMOM) is chosen in which the abscissas and weights of the quadrature method are tracked directly. The utilization of this framework is proposed to examine the transport of sand in sandstorms. Furthermore, the physical mechanisms necessary for production and sustenance of large-scale electric fields in sandstorms is investigated.

Page generated in 0.1192 seconds