• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 8
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Émissions lumineuses et acoustiques lors de la rupture de scintillateurs inorganiques / Acoustic and light emissions during fracture of inorganic scintillators

Tantot, Alexis 14 December 2015 (has links)
La glace, le quartz, l'oxyde de magnésium ou encore les bonbons Wint-o-green (produits par Life Savers) sont quelques-uns des matériaux connus pour émettre de la lumière lors de leur fracture. Ce phénomène, appelé fractoluminescence, révèle que la fracture met en jeu des processus plus complexes que la seule création de surfaces. Ces émissions lumineuses permettent-elles d'analyser l'endommagement des matériaux, au même titre que les émissions acoustiques ? Né de l'union imprévue entre mécanique de la fracture et physique des particules, un montage expérimental a été développé pour étudier les émissions lumineuses et acoustiques lors de la fracture de scintillateurs inorganiques — matériaux couramment utilisés comme détecteurs de particules. Trois types de scintillateurs inorganiques ont été étudiés : le CdWO4, le ZnWO4, et le BGO. Il a été démontré que le CdWO4 et le ZnWO4 émettent de la lumière lors de leur fracture à pression ambiante. Des tests plus poussés ont été menés sur le BGO. Le phénomène de fractoluminescence dans le BGO a été étudié dans le cas de la fracture lente et de la fracture rapide, dans différentes conditions de pression : pression ambiante et basse pression (10−5 mbar). Dans chaque cas, des émissions lumineuses ont été observées mais elles dépendent fortement de l'environnement et des conditions de chargement de l'échantillon. Lors de la fracture lente sous vide, les émissions de lumière semblent globalement corrélées en temps à l'avancée de la fissure et aux émissions acoustiques, souvent employées en mécanique de la fracture comme indicateurs de l'endommagement. La résolution temporelle de la voie lumineuse à la nanoseconde a montré l'existence de groupes de photons pendant la fracture, à des échelles de temps inaccessibles par les méthodes acoustiques classiques. Le montage expérimental permet aussi de mesurer la quantité de lumière émise. L'énergie lumineuse lors de la fracture lente sous vide semble être proportionnelle à la surface créée. Lors de la fracture rapide sous vide, nous avons établi que 1.7 × 10−3 % de l'énergie de fracture est convertie en lumière contre au minimum 3 × 10−3 % a` pression ambiante. Cette différence montre une nouvelle fois l'importance de l'environnement et offre des pistes pour l'identification du mécanisme d'émission lumineuse / Materials such as ice, quartz, MgO or the Wint-o-green candy from Lifesavers are known to emit light during their fracture. This phenomenon, called fractoluminescence, shows that fracture is a much more complex process than the simple creation of surfaces. Do the light emissions allow to analyze material failure as the acoustic emissions ? An experimental setup is born out of the union between fracture mechanics and particle physics. It enables to study the light and acoustic emissions during fracture of inorganic scintillators — materials generally used as particle detectors. CdWO4, ZnWO4 and BGO have been tested. We demonstrated that CdWO4 and ZnWO4 emit light during their fracture at ambient pressure. More intensive tests were performed on BGO. Light emissions were studied for slow and fast crack propagation, at ambient pressure and under vacuum (10−5 mbar). In all cases, light emissions have been observed but they strongly depend on the environment and on the loading conditions. During slow crack propagation in vacuum, the light emission seems to be globally correlated in time to the crack propagation and to the acoustic emissions, which are often used in fracture mechanics as indicators of mechanical failure. The extreme time resolution of the light channel, down to the nanoseconds, shows clusters of photons during fracture, at time scales unreachable by usual acoustic methods. The experimental setup also allows to quantify the amount of light energy emitted. Light energy during slow fracture in vacuum seems to be proportional to the surface created by the crack propagation. During fast fracture in vacuum, 1.7 × 10−3 % of fracture energy is converted into light while at least 3 × 10−3 % at ambient pressure. This difference demonstrates, once again, how important the environment is, and offers leads for identifying mechanisms of light emission
22

Charge Separation in Nano-diamonds: DFT Study

Panta, Uday 12 August 2020 (has links)
No description available.
23

Mise en place de l'expérience d'absorption transitoire femtoseconde et son application sur des dérivés du pérylène diimide

Karsenti, Paul-Ludovic January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
24

Effet de la microstructure sur les propriétés excitoniques des polymères semi-conducteurs semi-cristallins

Paquin, Francis 01 1900 (has links)
Les polymères semi-conducteurs semicristallins sont utilisés au sein de diodes électroluminescentes, transistors ou dispositifs photovoltaïques organiques. Ces matériaux peuvent être traités à partir de solutions ou directement à partir de leur état solide et forment des agrégats moléculaires dont la morphologie dicte en grande partie leurs propriétés optoélectroniques. Le poly(3-hexylthiophène) est un des polymères semi-conducteurs les plus étudiés. Lorsque le poids moléculaire (Mw) des chaînes est inférieur à 50 kg/mol, la microstructure est polycristalline et composée de chaînes formant des empilements-π. Lorsque Mw>50 kg/mol, la morphologie est semicristalline et composée de domaines cristallins imbriquées dans une matrice de chaînes amorphes. À partir de techniques de spectroscopie en continu et ultrarapide et appuyé de modèles théoriques, nous démontrons que la cohérence spatiale des excitons dans ce matériau est légèrement anisotrope et dépend de Mw. Ceci nous permet d’approfondir la compréhension de la relation intime entre le couplage inter et intramoléculaire sur la forme spectrale en absorption et photoluminescence. De plus, nous démontrons que les excitations photogénérées directement aux interfaces entre les domaines cristallins et les régions amorphes génèrent des paires de polarons liés qui se recombinent par effet tunnel sur des échelles de temps supérieures à 10ns. Le taux de photoluminescence à long temps de vie provenant de ces paires de charges dépend aussi de Mw et varie entre ∼10% et ∼40% pour les faibles et hauts poids moléculaires respectivement. Nous fournissons un modèle permettant d’expliquer le processus de photogénération des paires de polarons et nous élucidons le rôle de la microstructure sur la dynamique de séparation et recombinaison de ces espèces. / Microstructure plays a crucial role in defining the optoelectrical properties of conjugated polymeric semiconductors which can be used in light harvesting and generating devices such as organic light emitting diodes, field effect transistors or photovoltaic devices. These polymers can be processed from solution or solidstate and form photophysical aggregates, consequently providing a complex network which controls the fate of any photogenerated species. poly(3-hexylthiopene) is one of the most studied polymeric semiconductor. In this material, the molecular weight (Mw) of the polymer governs the microstructure and highly impact the optical and electronic properties. Below Mw≈ 50 kg/mol, the polymer chains forms polycrystalline domains of π-stacked molecules while high Mw (>50 kg/mol) consists of a two-phase morphology of molecularly ordered crystallites that are embedded in amorphous regions. Such morphology provides a bidimensionnal network hosting both neutral excitations, known as Frenkel excitons, and polarons. By means of steady-state and ultrafast spectroscopy experiment and backed up theoretical modeling, we demonstrate that the spatial coherence of such excitations are anisotropic in the lattice and depends on the Mw of the polymer, providing a deep understanding of the interplay between interchain (excitonic) and intrachain coupling in polymer aggregates. Moreover, we show that direct excitation at the interface between molecularly ordered and amorphous regions generates tightlybound charge pairs which decay via quantum tunneling over >10 ns. The yield of delayed photoluminescence arising from the recombination of those charge pairs varies between ∼10% and ∼40% for low and high Mw films respectively. We provide a quantitative model that describes the photogeneration process of those geminate polaron pairs and determine the role of the microstructure in the charge separation and recombination processes.
25

Single and Accumulative Electron Transfer – Prerequisites for Artificial Photosynthesis

Karlsson, Susanne January 2010 (has links)
Photoinduced electron transfer is involved in a number of photochemical and photobiological processes. One example of this is photosynthesis, where the absorption of sunlight leads to the formation of charge-separated states by electron transfer. The redox equivalents built up by successive photoabsorption and electron transfer is further used for the oxidation of water and reduction of carbon dioxide to sugars. The work presented in this thesis is part of an interdisciplinary effort aiming at a functional mimic of photosynthesis. The goal of this project is to utilize sunlight to produce renewable fuels from sun and water. Specifically, this thesis concerns photoinduced electron transfer in donor(D)-photosensitizer(P)-acceptor(A) systems, in mimic of the primary events of photosynthesis. The absorption of a photon typically leads to transfer of a single electron, i.e., charge separation to produce a single electron-hole pair. This fundamental process was studied in several molecular systems. The purpose of these studies was optimization of single electron transfer as to obtain charge separation in high yields, with minimum losses to competing photoreactions such as energy transfer.Also, the lifetime of the charge separated state and the confinement of the electron and hole in three-dimensional space are important in practical applications. This led us to explore molecular motifs for linear arrays based on Ru(II)bis-tridentate and Ru(II)tris-bidentate complexes. The target multi-electron catalytic reactions of water-splitting and fuel production require a build-up of redox equivalents upon successive photoexcitation and electron transfer events. The possibilities and challenges associated with such processes in molecular systems were investigated. One of the studied systems was shown to accumulate two electrons and two holes upon two successive excitations, without sacrificial redox agents and with minimum yield losses. From these studies, we have gained better understanding of the obstacles associated with step-wise photoaccumulation of charge and how to overcome them.
26

Mise en place de l'expérience d'absorption transitoire femtoseconde et son application sur des dérivés du pérylène diimide

Karsenti, Paul-Ludovic January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
27

Modélisation hors-équilibre des cellules solaires : effets quantiques au niveau nanométrique / Nonequilibrium modeling of solar cells : quantum effects at the nanoscale level

Nematiaram, Tahereh 07 June 2017 (has links)
Un défi mondial fondamental est de développer des technologies peu coûteuses et stables pour récolter efficacement l'énergie solaire et la transformer en formes pratiques. Ainsi pour la conversion photovoltaïque plusieurs générations de cellules solaires ont émergé. En général, on peut diviser les types existants de cellules solaires en deux classes distinctes: les photovoltaïques inorganiques conventionnels (IPV), comme les jonctions silicium p-n, et les cellules solaires excitoniques (XSCs). Selon le type de matériaux utilisés les cellules solaires excitoniques sont classées en deux catégories: les cellules solaires à colorant (DSC) et les cellules organiques (OPV) développées en couche unique, ou en bi-couche, et les hétérojonction en volume (BHJ). Les cellules solaires à base de points quantiques (QDSC) sont un autre type de cellules solaires qui ont une configuration similaire aux DSCs ou OPVs.Bien que la performance des cellules solaires excitoniques ait été un thème central de la communauté scientifique pendant de nombreuses années, des approches théoriques facilitant sa compréhension sont nécessaires. Les théories semi-classiques son inadaptées pour traiter les phénomènes quantiques dans les cellules solaires nano-structurées. De plus, en raison de l'attraction coulombienne entre les porteurs photo-générés, l'application du formalisme de la fonction de Green hors équilibre (NEGF) pose certaines difficultés. Par conséquent, dans cette thèse, nous développons un nouveau formalisme quantique, basé sur la théorie de la diffusion quantique et sur l'équation de Lippmann-Schwinger, pour fournir un cadre complet pour comprendre les processus fondamentaux intervenant dans le fonctionnement des cellules solaires excitoniques.En particulier, nous nous concentrons sur des aspects qui ont été peu pris en compte dans le passé et nous abordons, au travers d’un modèle à deux niveaux, l'interaction Coulombienne électron-trou à courte et à longue portée, la recombinaison électron-trou, l'existence de canaux d'évacuation supplémentaires, le couplage électron phonon et la formation de bandes polaroniques.Ici, les cellules solaires excitoniques à deux niveaux sont considérées dans les régimes permanents et transitoires d'injection de charge. Les photocellules moléculaires où le processus de conversion de l'énergie se déroule dans un seul complexe donneur-accepteur moléculaire attaché aux électrodes sont considérées comme étant représentatives des XSC dans le régime permanent. A titre d'exemple pour les dispositifs photovoltaïques dans le régime transitoire, nous considérons les cellules photovoltaïques organiques hétéro-jonctions massives (BHJ OPV) qui sont l'approche la plus courante des OPV et se composent d'espèces mixtes donneuses et accepteuses. Dans ces systèmes, l'exciton créé par l'absorption des photons dans le côté donneur doit atteindre d'abord l'interface donneur-accepteur. A partir de ce moment, seulement un régime transitoire commence où les charges peuvent être séparées et injectées dans leurs côtés respectifs.Nous démontrons que la séparation du porteur de charge est un processus complexe qui est affecté par différents paramètres, tels que la force de l'interaction électron-trou et le taux de recombinaison non radiative. En outre, en fonction de la structure de la cellule, l'interaction électron-trou peut normalement diminuer ou augmenter anormalement l'efficacité. Le modèle proposé aide à comprendre les mécanismes des cellules solaires excitoniques, et il peut être utilisé pour optimiser leur rendement. / A fundamental global challenge is to develop an inexpensive, stable and scalable technology for efficiently harvesting solar photon energy and converting it into convenient forms. Photovoltaic energy conversion is attracting great attention such that several generations of solar cells have emerged. The existing types of solar cells roughly fall into two distinct classes: conventional inorganic photovoltaics (IPVs), such as silicon p-n junctions, and excitonic solar cells (XSCs). The mechanistic distinction of IPVs and XSCs results in fundamental differences in their photovoltaic behavior.According to the type of materials used in their structure, excitonic solar cells are classified into two categories: dye-sensitized solar cells (DSC) and organic photovoltaics (OPV) developed in single-layer and bi-layer including planar and bulk hetero--junction configurations. Quantum dot solar cells (QDSC) are another type of solar cells that have a similar configurations to DSCs or OPVs.While understanding the performance of excitonic solar cells has been a central effort of the scientific community for many years, theoretical approaches facilitating the understanding of electron-hole interaction and recombination effects on the cell performance are needed. Semiclassical theories are inefficient tools to treat quantum phenomena in nano-structured solar cells, and on the other hand, due to the Coulomb attraction between the photo generated carriers, the application of standard Non-Equilibrium Green Function (NEGF) formalism presents some difficulties although some specific methods allow to circumvent this problem.In this thesis we develop a new quantum formalism, which is based on quantum scattering theory and on the Lippmann-Schwinger equation, to provide a comprehensive framework for understanding the fundamental processes taking place in the operation of excitonic solar cells. Considering simple two-level models we address important effects such as the short--range and long--range electron--hole Coulomb interaction, the electron--hole recombination, the existence of extra evacuation channels, and the electron--phonon coupling and polaronic bands formation.Here, the two-level excitonic solar cells are considered in the permanent and transitory regimes of charge injection. The molecular photocells where the energy conversion process takes place in a single molecular donor-acceptor complex attached to electrodes are considered as a representative of XSCs in the permanent regime. As an example for the photovoltaic devices in the transitory regime, we consider the bulk hetero--junction organic photovoltaic cells (BHJ OPVs) which are the most common approach to OPVs and consists of mixed donor and acceptor species that form interpenetrating connective networks. In these systems the exciton created by the photon absorption in the donor side must reach first the donor--acceptor interface. From this moment only a transitory regime begins where the charges can be separated and injected in their respective sides.We demonstrate that the charge carrier separation is a complex process that is affected by different parameters, such as the strength of the electron--hole interaction and the non--radiative recombination rate. Furthermore, depending on the cell structure, the electron-hole interaction can normally decrease or abnormally increase the cell efficiency. The proposed model helps to understand the mechanisms of excitonic solar cells, and it can be used to optimize their yield.
28

The Charge-Carrier Dynamics and Photochemistry of CeO<sub>2</sub> Nanoparticles

Pettinger, Natasha January 2019 (has links)
No description available.
29

Understanding and Modifying TiO<sub>2</sub> for Aqueous Organic Photodegradation

Sun, Bo 26 September 2005 (has links)
No description available.
30

A Comprehensive Investigation of Photoinduced Electron Transfer and Charge Transfer Mechanisms in Push-Pull Donor-Acceptor Systems: Implications for Energy Harvesting Applications

Alsaleh, Ajyal Zaki 12 1900 (has links)
Donor-acceptor systems exhibit distinctive attributes rendering them highly promising for the emulation of natural photosynthesis and the efficient capture of solar energy. This dissertation is primarily devoted to the investigation of these unique features within diverse donor-acceptor system typologies, encompassing categories such as closely covalently linked, push-pull, supramolecular, and multi-modular donor- acceptor conjugates. The research encompasses an examination of photosynthetic analogs involving compounds such as chelated azadipyromethene (AzaBODIPY), N,N-dimethylaminophenyl (NND), phenothiazine (PTZ), triphenylamine (TPA), phenothiazine sulfone (PTZSO2), tetracyanobutadiene (TCBD), and expanded tetracyanobutadiene (exTCBD). The strategic configuration of the donor (D), acceptor (A), and spacer elements within these constructs serves to promote intramolecular charge transfer (ICT), which are crucial for efficient charge and electron transfer. The employment of cutting-edge analytical techniques, such as ultrafast transient absorption spectroscopy, is integral to the study. Furthermore, a comprehensive suite of analytical methodologies including steady-state UV-visible absorption spectroscopy, fluorescence and phosphorescence spectroscopies, electrochemical techniques (including cyclic voltammetry and differential pulse voltammetry), spectroelectrochemistry, and density functional theory calculation (DFT), collectively contribute to the comprehensive characterization of push-pull donor-acceptor systems, with a particular emphasis on their potential as highly effective solar energy harvesting application.

Page generated in 0.1495 seconds