• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High-Energy, Long-Lived Charge-Separated States via Molecular Engineering of Triplet State Donor-Acceptor Systems

Obondi, Christopher O 08 1900 (has links)
Molecular engineering of donor-acceptor dyads and multimodular systems to control the yield and lifetime of charge separation is one of the key goals of artificial photosynthesis for harvesting sustainably solar energy. The design of the donor-acceptor systems mimic a part of green plants and bacterial photosynthetic processes. The photochemical events in natural photosynthesis involve the capturing and funneling of solar energy by a group of well-organized chromophores referred to as an ‘antenna' system causing an electron transfer into the ‘reaction center,' where an electron transfer processes occur resulting a long-lived charge separated state. Over the last two to three decades, many efforts have been directed by the scientific community designing of multi-modular systems that are capable of capturing most of the useful sunlight and generating charge separated states of prolonged lifetimes with adequate amounts of energy. In this dissertation, we report on the design and synthesis of donor–acceptor conjugates with the goal of modulating the yield and lifetime of their charge separated states and hence, improving the conversion of light energy into chemical potential. In simple donor-acceptor systems, generally, the energy and electron transfer events originate from the singlet excited state of the donor or acceptor and can store the greatest amount of energy but must be fast to out compete intersystem crossing. To address this limitation, we have designed novel donor –acceptor conjugates that use high-energy triplet sensitizers in which electron transfer is initiated from the long lived triplet state of the donor. The triplet photosensitizers used were palladium(II) porphyrin and platinum(II) porphyrin. Heavy metal effect in these porphyrins promoted intersystem crossing and the energies of their excited state was quite high. For the case of palladium (II) porphyrin the energy stored was found to 1.89 eV and that of platinum(II) porphyrin 1.84 eV. In addition to using triplet photosensitizers as donors, we have used donors that are difficult to oxidize and hence producing long lived charge separated states with adequate amount of stored energy. The system that was used for this study is zinc porphyrin with meso-aryl pentafluorophenyl substituents and fullerene, C60 as the acceptor. The presence of fluorine substituents on zinc porphyrin makes it harder to undergo oxidation. When this high potential donor-acceptor system undergoes a photoinduced charge-separation, the estimated energy stored was found to be 1.70 eV, one of the highest reported in literature so far. To further extend the lifetime of the charge separated states generated in this high-potential zinc porphyrin-fullerene dyad a pyridine functionalized tetrathiafulvalene was axially coordinated to the Zn metal producing a supramolecular triad capable of producing long-lived charge separated state. In a subsequent study, a multi-modular donor-acceptor system composed of a porphyrin, fullerene (C60) and a BF2-chelated dipyrromethene (BODIPY) with a supramolecular arrangement in the form of porphyrin-BODIPY-C60, one of the few reported in literature. By selectively exciting BODIPY and ZnP moieties, efficient singlet-singlet energy transfer from 1BODIPY * to ZnP in toluene was observed in the case of the dyad ZnP-BODIPY. However, when ZnP is excited, electron transfer occurred with the formation ZnP.+-BODIPY-C60.- charge separated state persisting for microseconds.
2

Single and Accumulative Electron Transfer – Prerequisites for Artificial Photosynthesis

Karlsson, Susanne January 2010 (has links)
Photoinduced electron transfer is involved in a number of photochemical and photobiological processes. One example of this is photosynthesis, where the absorption of sunlight leads to the formation of charge-separated states by electron transfer. The redox equivalents built up by successive photoabsorption and electron transfer is further used for the oxidation of water and reduction of carbon dioxide to sugars. The work presented in this thesis is part of an interdisciplinary effort aiming at a functional mimic of photosynthesis. The goal of this project is to utilize sunlight to produce renewable fuels from sun and water. Specifically, this thesis concerns photoinduced electron transfer in donor(D)-photosensitizer(P)-acceptor(A) systems, in mimic of the primary events of photosynthesis. The absorption of a photon typically leads to transfer of a single electron, i.e., charge separation to produce a single electron-hole pair. This fundamental process was studied in several molecular systems. The purpose of these studies was optimization of single electron transfer as to obtain charge separation in high yields, with minimum losses to competing photoreactions such as energy transfer.Also, the lifetime of the charge separated state and the confinement of the electron and hole in three-dimensional space are important in practical applications. This led us to explore molecular motifs for linear arrays based on Ru(II)bis-tridentate and Ru(II)tris-bidentate complexes. The target multi-electron catalytic reactions of water-splitting and fuel production require a build-up of redox equivalents upon successive photoexcitation and electron transfer events. The possibilities and challenges associated with such processes in molecular systems were investigated. One of the studied systems was shown to accumulate two electrons and two holes upon two successive excitations, without sacrificial redox agents and with minimum yield losses. From these studies, we have gained better understanding of the obstacles associated with step-wise photoaccumulation of charge and how to overcome them.
3

Theory of Transfer Processes in Molecular Nano-Hybrid Systems / A Stochastic Schrödinger Equation Approach for Large-Scale Open Quantum System Dynamics

Plehn, Thomas 19 March 2020 (has links)
Das Verstehen der elektronischen Prozesse in Nano-Hybridsystemen, bestehend aus Molekülen und Halbleiterstrukturen, eröffnet neue Möglichkeiten für optoelektronische Bauteile. Dafür benötigt es nanoskopische und gleichzeitig atomare Modelle und somit angepasste Rechenmethoden. Insbesondere "Standard"-Ansätze für die Dynamik offener Quantensysteme werden mit zunehmender Systemgröße jedoch sehr ineffizient. In dieser Arbeit wird eine neue Methode basierend auf einer stochastischen Schrödinger-Gleichung etablieren. Diese umgeht die numerischen Limits der Quanten-Mastergleichung und ermöglicht Simulationen von imposanter Größe. Ihr enormes Potenzial wird hier in Studien zu Anregungsenergietransfer und Ladungsseparation an zwei realistischen Nano-Hybridsystemen demonstriert: para-sexiphenyl Moleküle auf einer flachen ZnO Oberfläche (6P/ZnO), und ein tubuläres C8S3 Farbstoffaggregat gekoppelt an einen CdSe Nanokristall (TFA/NK). Im 6P/ZnO System findet nach optischer Anregung Energietransfer vom 6P Anteil zum ZnO statt. Direkt an der Grenzfläche können Frenkel-Exzitonen zusätzlich Ladungsseparation initiieren, wobei Elektronen ins ZnO transferiert werden und Löcher im 6P Anteil verbleiben. Beide Mechanismen werden mittels laserpulsinduzierter ultraschneller Wellenfunktionsdynamik simuliert. Danach wird die langsamere dissipative Lochkinetik im 6P Anteil studiert. Hierfür wird die eigene Simulationstechnik der stochastischen Schrödinger-Gleichung verwendet. Die Studie an der TFA/NK Grenzfläche basiert auf einer gigantischen equilibrierten Aggregatstruktur aus 4140 Molekülen. Ein generalisiertes Frenkel-Exzitonenmodell wird benutzt. Der Ansatz der stochastischen Schrödinger-Gleichung ermöglicht bemerkenswerte Einblicke in die Aggregat-interne Exzitonenrelaxation. Danach werden inkohärente Raten des Exzitonentransfers zum NK berechnet. Unterschiedliche räumliche Konfigurationen werden untersucht und es wird diskutiert, warum das Förster-Modell hier keine Gültigkeit besitzt. / Understanding the electronic processes in hybrid nano-systems based on molecular and semiconductor elements opens new possibilities for optoelectronic devices. Therefore, it requires for models which are both nanoscopic and atomistic, and so for adapted computational methods. In particular, "standard" methods for open quantum system dynamics however become very inefficient with increasing system size. In this regard, it is a key challenge of this thesis, to establish a new stochastic Schrödinger equation technique. It bypasses the computational limits of the quantum master equation and enables dissipative simulations of imposing dimensionality. Its enormous potential is demonstrated in studies on excitation energy transfer and charge separation processes in two realistic nanoscale hybrid systems: para-sexiphenyl molecules deposited on a flat ZnO surface (6P/ZnO), and a tubular dye aggregate of C8S3 cyanines coupled to a CdSe nanocrystal (TDA/NC). After optical excitation, the 6P/ZnO system exhibits exciton transfer from the 6P part to the ZnO. Close to the interface, Frenkel excitons may further initiate charge separation where electrons enter the ZnO and holes remain in the 6P part. Both mechanisms are simulated in terms of laser-pulse induced ultrafast wave packet dynamics. Afterwards, slower dissipative hole motion in the 6P part is studied. For this purpose, the own stochastic Schrödinger equation simulation technique is applied. The study on the TDA/NC interface is based on a gigantic equilibrated nuclear structure of the aggregate including 4140 dyes. A generalized Frenkel exciton model is employed. Thanks to the stochastic Schrödinger equation approach, energy relaxation in the exciton band of the TDA is simulated in outstanding quality and extend. Then, incoherent rates for exciton transfer to the NC are computed. Different spatial configurations are studied and it is discussed why the Förster model possesses no validity here.

Page generated in 0.1375 seconds