• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fresh Approach for High-Throughput Studies of Ion-Selective Materials Using Reusable ChemFET Platform

Banning, Douglas 30 April 2019 (has links)
Aqueous anions play an important role in our world, and the ability to continuously measure them provides both environmental and health benefits. Chemically-sensitive field effect transistors (ChemFETs) are becoming increasingly popular in the field of aqueous measurement due to their relatively low-cost capability for real-time, continuous sensing. Receptor molecules or mixtures displaying affinity for a particular ion can also be utilized in a ChemFET gate membrane. Receptors can be incorporated into the gate oxide membrane and the entire ChemFET can utilized in an aqueous environment, thus utilizing hydrophobic receptors in an aqueous anion-sensing application. Demonstrating the ability to reuse the sensors validates an important characteristic for ChemFET-based research. Additionally, numerous other receptor molecules are evaluated against an array of common anions. Selectivity coefficients are compared to the Hofmeister Series. Additional membranes are evaluated for suitability for incorporation of receptors on the ChemFET gate oxide surface. This thesis includes previously unpublished co-authored material. / 2021-04-30
2

Développement des microcapteurs chimiques CHEMFETs pour l'analyse de l'eau

HUMENYUK, Iryna 07 July 2005 (has links) (PDF)
L'intérêt porté aux microcapteurs électrochimiques ChemFETs (Chemical Field Effect Transistor) ne cesse de croître, stimulé par leurs nombreuses applications. Au cours de cette thèse, différentes structures de ChemFETs à canal non préformé et préformé ont été étudiées, simulées et réalisées. Le procédé technologique et l'encapsulation des ChemFETs à canal préformé ont été mis au point. Les caractéristiques électrochimiques de ces structures ChemFETs ont été effectuées afin de mettre en évidence l'influence du régime de fonctionnement du ChemFETs sur leurs paramètres de détection (sensibilité, linéarité&). Le microcapteur générique pH-ChemFET (grille SiO2/Si3N4) a été adapté à la détection de l'ion ammonium aboutissant à la réalisation de pNH4-ChemFET (grille SiO2/Si3N4/PSX). L'utilisation des techniques de photolithographie a permis la fabrication collective des couches ionosensibles à base d'une matrice organique en polysiloxane (PSX) et d'un ionophore associé: nonactine. La fonctionnalité des pH-ChemFETs et pNH4-ChemFETs a été vérifiée expérimentalement pour la gamme de concentration pH = [2-11] et pNH4 = [1-5] respectivement.
3

Développement de transistors à effet de champ à base de nanofils de silicium pour la détection en phase liquide / Development of Silicon Nanowire Field Effect Transistors for Detection in Liquid Phase

Lale, Ahmet 17 October 2017 (has links)
Les transistors à effet de champ sensibles aux ions (ISFET) sont des composants électroniques conçus pour fonctionner en phase liquide. Pour résumer, ce sont des MOSFET dont la grille métallique est remplacée par une membrane isolante ionosensible. Au début des années 2000, ces composants ont évolué avec l'introduction des premiers dispositifs à base de nanofils de silicium. Grâce à leurs faibles dimensions, ces capteurs ont ouvert de nouvelles perspectives, comme par exemple, l'étude des métabolismes intracellulaires. L'objectif de cette thèse a été de développer et d'étudier un capteur de type ISFET, à base de nanofils de silicium, ayant comme couche sensible l'alumine Al2O3. Les premiers travaux ont porté sur l'intégration de films minces d'alumine Al2O3 dans un procédé de type MOSFET. Ce matériau devant être déposé sur des nanofils de silicium, la technique de dépôt successif de couches moléculaires (Atomic Layer Deposition ALD) a été retenue. Cette méthode offre la possibilité de déposer des films d'épaisseur homogène tout autour des nanofils. Après l'étude de l'ALD-Al2O3, la deuxième grande partie de ce projet a consisté à développer, en utilisant les techniques de la microélectronique, des structures innovantes à base de nanofils de silicium. Des transistors constitués d'un seul nanofil, et d'autres constitués de réseaux parallèles de nanofils ont été réalisés. Ces capteurs ont été intégrés dans des canaux microfluidiques, permettant ainsi de localiser précisément le liquide sur les nanofils, mais aussi de pouvoir travailler en micro/nanovolumes. La dernière partie de ce projet a consisté à caractériser ces capteurs en phase liquide. Les différentes configurations ont montré leurs avantages et inconvénients en termes de transconductance, courants de fuite, pentes sous le seuil, sensibilités au pH et aux ions interférents (Na+ et K+). Les caractérisations se sont avérées excellentes et laissent entrevoir des perspectives intéressantes pour des applications biologiques. Les principales innovations de ces capteurs concernent : l'utilisation de nanofils suspendus, la réalisation d'une gaine isolante ionosensible bicouche SiO2/Al2O3 tout autour des nanofils, la variation du dopage le long des nanofils ce qui a conduit à la réalisation de jonctions N+/P/N+, et l'intégration des capteurs dans des canaux microfluidiques couverts. / Ion-sensitive field effect transistors (ISFET) are electronic components designed to operate in liquid phase. To summarize, they are MOSFET-based devices whose metal gate is replaced by an ionosensitive insulating layer. In the early 2000s, these components evolved with the introduction of the first device based on silicon nanowires. Thanks to their small dimensions, these sensors opened up new perspectives, such as the study of intracellular metabolisms. The aim of this thesis was to develop and study a type of ISFET sensor, based on silicon nanowires, with Al2O3 alumina as sensitive layer. The first part of this work was focused on the integration of thin alumina Al2O3 films in a MOSFET process. This material had to be deposited on silicon nanowires, that is why Atomic Layer Deposition (ALD) was used. This method allows to deposit films with uniform thickness all around nanowires. After the study of ALD-Al2O3, the second major part of this project was to develop innovative structures, based on silicon nanowires, using microelectronics methods. Transistors consisting of a single nanowire, and others consisting of parallel networks of nanowires were fabricated. These sensors were integrated in microfluidic channels, allowing to precisely locate the liquid on nanowires and also to work in micro/nanovolumes. The last part of this project consisted in characterizing these sensors in liquid phase. The different configurations showed their advantages and disadvantages in terms of transconductance, leakage currents, slopes below the threshold, sensitivities to pH and interfering ions (Na+ and K+). The characterizations proved to be excellent and suggest interesting prospects for biological applications. The main innovations of these sensors are: the use of suspended nanowires, the realisation of a bilayer SiO2/Al2O3 ion-sensitive sheath all around the nanowires, the doping variation along the nanowires which led to the realization of N+/P/N+ junctions, and the integration of sensors into covered microfluidic channels.
4

Conception, réalisation et modélisation de microcapteurs pour l'analyse biochimique Application à la détection de l'urée

Benyahia, Ahmed 30 June 2010 (has links) (PDF)
Les récents développements dans l'analyse chimique et biochimique, grâce à la technologie des ChemFETs, ont permis de proposer un large champ d'application. Ces composants ont besoin néanmoins d'être développés pour des applications médicales et agroalimentaires comme la transduction, l'intégration de couches sensibles et l'intégration de l'électrode de référence. Au cours de cette thèse, une étude sur l'intégration d'une microélectrode de référence a été réalisée pour permettre de concevoir une puce ChemFET tout intégrée, avec les techniques de la microélectronique. Cette microélectrode doit imposer un potentiel stable au milieu d'analyse, ayant une faible dérive temporelle, et une longue durée de vie. Ainsi, nos travaux ont conduit au développement d'un nouveau procédé de fabrication de puce pH-ChemFET. Ces nouvelles structures ont été réalisées au sein de la centrale du LAAS- CNRS et validées par leurs caractérisations. La compréhension des phénomènes interagissants, la prévision du fonctionnement, l'influence de l'environnement passent par la modélisation et la simulation. Les modèles existant des pH-ChemFET sont nombreux et robustes. Cependant, concernant les détecteurs enzymatiques EnFETs, il n'existe pas de modèle intégrant tous les phénomènes physico-chimiques. Ainsi, nous avons développé un modèle intégrant la diffusion, la cinétique enzymatique, les équations acido-basiques, le flux, la réponse potentiometrique. Ce modèle a permis la compréhension des mécanismes physiques et d'étudier l'impact des différentes grandeurs influentes. A partir de ce modèle adaptable aux différents capteurs enzymatiques, des EnFETs ont été ainsi réalisées. Les caractérisations de ces détecteurs ont permis par la concordance des résultats expérimentaux et des résultats de simulation, de montrer la validité et la robustesse du modèle.
5

Développement d'interfaces adaptées aux analyses biochimiques et biologiques. Application aux capteurs chimiques CHEMFETs

Pourciel-Gouzy, Marie Laure 15 June 2004 (has links) (PDF)
Les techniques d'analyses médicales nécessitent le développement, à faible coût, de capteurs chimiques fiables. Dans ce contexte, les transistors chimiques à effet de champ CHEMFETs offrent des solutions innovantes à condition d'optimiser l'interface entre microtechnologies et biotechnologies. Au cours de cette thèse, nous nous sommes attachés à développer des techniques permettant de coupler espèces biologiques et silicium. Deux approches ont été étudiées, toutes les deux basées sur l'utilisation des polymères. La première approche a été centrée sur le développement des techniques d'encapsulation et de création de micro-volumes. Pour cela, des micro-cuves d'analyse ont été réalisées d'abord en plexiglas® puis en PDMS. Après l'optimisation des caractéristiques géométriques, le suivi de lactivité bactérienne a été effectué grâce au suivi du pH de la solution à l'aide de pH-ISFETs. Nous avons ainsi démontré la possibilité de détecter l'activité bactérienne dans le cas de Lactobacillus Acidophilus et commencé à déterminer la « signature » biologique de cette bactérie. La deuxième approche a été consacrée à l'adaptation des CHEMFETs à la détection enzymatique. Pour cela, nous avons envisagé d'utiliser un polymère en tant que matrice de support d'un élément biologique. L'utilisation des techniques de photolithographie a ainsi permis la fabrication collective de couches enzymatiques en PVA en vue d'une détection biochimique. Après avoir appliqué le protocole de dépôt mis au point à l'uréase, nous avons caractérisé l'évolution de l'activité enzymatique des membranes ainsi réalisées. Ensuite, nous avons validé ce procédé par la fabrication de microcapteurs chimiques de type ENFET et nous avons détecté des taux d'urée par le suivi des variations du pH au sein de solutions de différentes concentrations.
6

Développement de microcapteurs électrochimiques pour l'analyse en phase liquide

Torbiero, Benoit 21 November 2006 (has links) (PDF)
Les techniques d'analyses chimiques et biologiques nécessitent le développement à faible coût de capteurs chimiques fiables. Dans ce contexte, les transistors chimiques à effet de champ ChemFETs et les microélectrodes offrent des solutions innovantes à condition d'optimiser l'interface entre les différents domaines que sont les microtechnologies, la biologie et la chimie. Au cours de cette thèse, nous nous sommes attachés à développer des techniques permettant de coupler des agents chimiques au silicium. Deux approches ont été étudiées, toutes les deux basées sur l'utilisation de polymère. La première approche a été centrée sur le développement des techniques d'encapsulation avec la réalisation de microcuves et micro-canaux d'analyse en PDMS. Le suivi de l'activité bactérienne à l'aide de pH-ISFETs a été optimisé dans le cadre de l'étude des lactobacillus acidophilolus. La deuxième approche s'est intéressée à l'adaptation des ChemFETs et des microélectrodes d'or à la détection d'ions tels que le potassium et le sodium. L'utilisation des techniques de photolithographie a ainsi permis la fabrication collective de couches ionosensibles en PSX (polysiloxane)
7

Senzory plynů založené na 1D a 2D materiálech / Gas sensors based on 1D and 2D materials

Brodský, Jan January 2021 (has links)
In this work, general properties of fundamental gas sensors are described. Thesis is mainly focused on chemoresistive and ChemFET types, which are further used in experimental part. Subsequently, properties, preparation and transfer methods of chosen 1D and 2D materials are described. Experimental part of this work describes design and fabrication of chips, which combine the sensing principals mentioned above for utilization of 1D and 2D materials as an active layer. Transfer methods of individual materials on fabricated chips are described and these materials are characterized by Raman spectroscopy and field effect transistor characteristics measurements. Finally, the response of chosen materials to oxidative and reductive gases is measured.
8

Conception, modélisation et réalisation de microcapteurs pour l'analyse de la sphère buccale. Application à la détection du glutamate

Djeghlaf, Lyas 29 March 2013 (has links) (PDF)
L'acide glutamique et plus particulièrement son ion associé le glutamate sont des additifs largement utilisés dans l'agro-alimentaire car caractéristiques du gout "umami". Cependant, leur consommation en excès peut être responsable de troubles cérébraux entraînant sueurs, maux de tête, perte d'équilibre, évanouissement et/ou douleurs. Il devient ainsi important de développer des techniques d'analyse en phase liquide des ions glutamates. Les travaux visent ainsi le développement de capteurs enzymatiques basés sur les transistors à effet de champ sensibles au pH (pH-ChemFET), pour la détection du glutamate. Ils visent à la réalisation technologique des microcapteurs Glutamate-EnFET (enzymatic field effect transistor), à leur modélisation et à leur caractérisation en milieux aqueux puis dans la salive, et enfin à leur intégration au sein d'un masticateur électronique développé par le laboratoire FLAVIC-INRA. En parallèle à la réalisation des pH-ChemFET, un nouveau concept de microcapteur, nommé ElecFET, a été mis en place. Ce nouveau concept combine les potentialités de détection des techniques ampérométrique et potentiométrique à la microéchelle. Les différentes étapes technologiques ont été effectuées et les puces ElecFETs ont été fabriquées au sein de la centrale technologique du LAAS-CNRS. Nous avons validé le fonctionnement de l'ElecFET en étudiant d'abord l'électrolyse de l'eau. Ensuite, l'étude des paramètres pouvant influencer la réponse du capteur a été abordée. Enfin, nous avons appliqué ce nouveau concept à la détection du péroxyde d'hydrogène, du glucose et finalement du glutamate.
9

Sensing materials based on ionic liquids

Saheb, Amir Hossein 08 July 2008 (has links)
The first chapter of this thesis describes the motivation behind using room temperature ionic liquids (RTILs) in gas sensor research and reviews current applications of RTILs in various sensors. The second chapter describes electrochemical polymerization of aniline in room temperature 1-butyl-3-methylimmidazolium ionic liquids without addition of any acid. It is shown that the polymerization of aniline in BMI(BF4) does require small but controlled amounts of water whereas the polymerization in BMI(PF6) and in BMI(TF2N) does not require any water addition. The third chapter describes the construction of reference electrodes for RTIL applications that have a known and reproducible potential versus the ferrocene/ ferrocenium couple. They are based on reference electrodes of the first kind, Ag/Ag+ couple type, or of the second kind, based on Ag/AgCl in M+Cl-. The stability, reproducibility, and temperature behavior of the two reference systems have been characterized. The fourth chapter describes the electrochemical preparation and spectral analysis of gold clusters by adding gold atoms one-by-one through polyaniline s ability to form a strong complex with chloroaurate at the protonated imine sites. Our results confirm that both the amount and the size of gold clusters affects the properties of the composite material. The fifth chapter describes the development and characterization of a CHEMFET sensing layer based on a composite of CSA-doped polyaniline (PANI), and the room temperature ionic liquid BMI(TF2N) for the sensing of ammonia gas. The work function responses of the cast films with and without IL are analyzed by step-wise changes of ammonia gas concentration from 0.5 to 694 ppm in air as a function of the mole fraction of IL to PANI. The PANI CSA/BMI(TF2N) layers shows enhanced sensitivities, lower detection limit and shorter response times. The final chapter describes the preparation and characterization of field-effect transistors with mixed ionic-electronic conductors that have been created by varying the ratio of room temperature ionic liquid and emeraldine salt of polyaniline. Transistor with high electronic conductivity (32mol% ES-PANI) and Au gate contact exhibited theoretical behavior of an IGFET; whereas, the purely ionic gate behaved irreproducibly, indicating that a capacitive divider has been formed in the gate.

Page generated in 0.015 seconds