• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 28
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efeito da adipocina chemerin na reabsorção ósseoa em modelo experimental de doença periodontal e hiperlipidemia / The adipokine chemerin effect on bone resorption in experimental model of periodontal disease and hyperlipidemia

Guerreiro, Giselle de Angelo Leite Carbonaro 01 June 2015 (has links)
A periodontite é uma doença bucal infecto-inflamatória resultante da quebra da homeostase entre biofilme dentário e o hospedeiro. Diversos estudos tem mostrado que a obesidade e o sobrepeso são importantes fatores de risco para o desenvolvimento da doença periodontal. O tecido adiposo representa um reservatório de mediadores inflamatórios. A chemerin é uma adipocina secretada pelo tecido adiposo e atua em numerosos processos fisiológicos, como metabolismo, proliferação e diferenciação celular. Levando em consideração que alterações de adiposidade, observadas por medidas antropométricas, estão relacionadas com maior incidência de periodontite, e que chemerin, uma citocina produzida por adipócitos, está envolvida na resposta inflamatória, nota-se uma lacuna na literatura que correlacione o papel de chemerin na progressão da doença periodontal. Portanto, o presente projeto tem como objetivo avaliar a participação da adipocina chemerin no desenvolvimento da doença periodontal em camundongos hiperlipidêmicos e avaliar o efeito desta adipocina sobre a diferenciação e ativação de células ósseas. No estudo in vivo, os animais foram submetidos ao modelo experimental de hiperlipidemia e/ou periodontite e divididos em 4 grupos: Grupo I: camundongos controle. Grupo II: camundongos controle infectados pela Porphyromonas gingivalis (Pg). Grupo III: camundongos hiperlipidêmicos não infectados. Grupo IV: camundongos hiperlipidêmicos infectados pela Pg. As amostras foram coletadas depois de 15, 30 e 60 dias. No estudo in vivo, o modelo de dieta hiperlipidêmica adotado foi eficaz em aumentar os níveis circulantes de colesterol e chemerin, embora não tenha alterado o peso dos animais. Observa-se ainda maior adiposidade corporal mostrada pelo aumento de peso dos tecidos adiposos retroperitoneal e epididimal dos animais hiperlipidêmicos. Na análise morfométrica foi observada uma maior perda óssea no grupo hiperlipidêmico quando comparado ao controle e essa perda óssea foi semelhante ao observado no animal infectado por Pg. Foi observado que a expressão de chemerin na gengiva e plasma se correlacionam com marcadores de osteoclastos no tecido gengival e com a reabsorção alveolar. No estudo in vitro, foi observado que chemerin leva à maior formação de depósitos mineralizados em cultura de osteoblastos e maior reabsorção óssea em cultura de osteoclastos. Conclui-se que a hiperlipidemia provoca reabsorção óssea alveolar semelhante ao observado com infecção oral com P. gingivalis. Chemerin participa da reabsorção óssea alveolar visto que os níveis desta adipocina na gengiva e plasma se correlacionam com marcadores de osteoclastos no tecido gengival e com a reabsorção alveolar. Chemerin aumenta atividade de osteoblastos e osteoclastos in vitro. / Periodontitis is an infectious inflammatory oral disease resultant from the breaking of homeostasis between biofilm and the host. Several studies have shown that overweight and obesity are major risk factors for the development of periodontal disease. Adipose tissue is a reservoir of inflammatory mediators. The chemerin is an adipokine secreted by adipose tissue and acts in numerous physiological processes, such as metabolism, proliferation and differentiation. Considering that adiposity changes, observed by anthropometric measurements, are related to higher incidence of periodontitis, and chemerin, a cytokine produced by adipocytes, is involved in the inflammatory response, there is a gap in the literature that correlates the paper chemerin in the progression of periodontal disease. Therefore, this project aims to evaluate the participation of chemerin adipokine in the development of periodontal disease in hyperlipidemic mice and evaluate the effect of this adipokine on the differentiation and activation of bone cells. In the in vivo study, the animals underwent to the experimental model of hyperlipidemia and / or periodontitis and divided into 4 groups: Group I: control mice. Group II: control mice infected with Porphyromonas gingivalis (Pg). Group III: hyperlipidemic mice not infected. Group IV: hyperlipidemic mice infected by Pg. Samples were collected after 15, 30 and 60 days. In the in vivo study, the model of hyperlipidemic diet adopted was effective in increasing circulating levels of cholesterol and chemerin, although it has not changed the weight of the animals. Greater body adiposity shown by the increased weight of the retroperitoneal and epididymal adipose tissues of hyperlipidemic animals was observed. In morphometric analysis, we observed an increased bone loss in hyperlipidemic group compared to the control and that this bone loss was similar to the observed in animals infected with Pg. It was observed that the gum chemerin expression and plasma correlate with markers of osteoclast in the gingival tissue and alveolar resorption. In the in vitro study, it was observed that chemerin leads to increased formation of mineralized deposits in cultured osteoblasts and increased bone resorption in osteoclast culture. It concludes that hyperlipidemia causes alveolar bone resorption similar to that observed on oral infection with P. gingivalis. Chemerin participates in alveolar bone resorption, at the levels of this adipokine gum and plasma correlate with osteoclast markers in gingival tissue and alveolar resorption. Chemerin increases osteoblast activity and osteoclasts in vitro.
2

Papel do sistema chemerin/ChemR23 na sinalização vascular da insulina de camundongos C57BL/6J e db/db / Role of chemerin/ChemR23 system on vascular insulin signaling in C57BL/6J and db/db mice

Neves, Karla Bianca 06 July 2016 (has links)
Chemerin e seu receptor (ChemR23) têm sido amplamente associados à disfunção endotelial, inflamação e resistência à insulina. No entanto, é ainda desconhecido se chemerin influencia diretamente a sinalização da insulina na vasculatura. A hipótese deste estudo é de que chemerin diminui a sinalização vascular da insulina, e que o uso de antagonista de ChemR23 (CCX 832) em um modelo de diabetes do tipo 2 relacionado à obesidade melhora as respostas vasculares a insulina. Mecanismos moleculares e vasculares foram investigados em artérias mesentéricas e células de músculo liso vascular em cultura (CMLV) de camundongos C57BL/6J, db/m (controles, não obesos, não diabéticos) e db/db (diabéticos, obesos), assim como em células endoteliais (CE) de humanos em cultura. Nossos resultados mostraram que chemerin diminui a vasodilatação induzida por insulina em camundongos C57BL/6J, efeito mediado por ChemR23, PI3K/Akt e estresse oxidativo. Em CMLV, chemerin, através de mecanismos dependentes de estresse oxidativo e ChemR23, diminui a fosforilação de IRS-1, PI3K e Akt e a translocação de GLUT4 para a membrana, induzidas por insulina. Chemerin também diminui a captação de glicose induzida por insulina via estresse oxidativo e ativação de AMPK e PI3K/Akt. Em CE, chemerin diminui a sinalização de óxido nítrico (NO) ativada pela insulina, novamente via ChemR23, estresse oxidativo e PI3K/Akt. CCX 832 diminui a massa corporal (sem alterar a ingestão de ração), os níveis de insulina e glicose (sem alterar a tolerância à glicose) e estresse oxidativo em aorta e rim de camundongos db/db. CCX 832 restaura parcialmente a disfunção vascular observada em camundongos db/db, sem modificar parâmetros estruturais destas artérias. Adicionalmente, CCX 832 diminui marcadores pró-inflamatórios em tecido adiposo perivascular (PVAT) e melhora a sinalização da insulina em aorta de camundongos db/db. Nossos achados destacam o sistema chemerin/ChemR23 como um novo e promissor alvo terapêutico para limitar a resistência à insulina e as complicações vasculares associadas ao diabetes relacionado à obesidade. / Chemerin and its G protein-coupled receptor (ChemR23) have been associated with endothelial dysfunction, inflammation and insulin resistance. Whether chemerin directly influences insulin signaling in the vasculature is unknown. We hypothesized that chemerin impairs vascular insulin signaling in obesity-related type 2 diabetes, effect that would be improved by the novel ChemR23 antagonist (CCX 832). Molecular and vascular mechanisms were probed in mesenteric arteries and cultured vascular smooth muscle cells (VSMC) from C57BL/6J, non-diabetic lean db/m and diabetic obese db/db mice as well as in human microvascular endothelial cells (EC). Chemerin decreased insulin-induced vasodilatation in C57BL/6J mice, effect mediated by ChemR23, PI3K/Akt and oxidative stress. In VSMC, chemerin, via oxidative stress- and ChemR23-dependent mechanisms, decreased insulin-induced IRS-1, PI3K and Akt phosphorylation, GLUT4 translocation to the membrane. In addition, chemerin decreases insulin-induced glucose uptake via oxidative stress and AMPK and PI3K/Akt activation. In EC, chemerin decreased insulin-activated nitric oxide (NO) signaling via ChemR23, oxidative stress and PI3K/Akt signaling pathway. CCX 832 decreases body weight (without altering food intake), insulin and glucose levels (without altering glucose tolerance) and oxidative stress in aorta and kidney from db/db mice. CCX 832 partially restored vascular dysfunction in db/db mice without modifying structural parameters. Additionally, CCX 832 decreases proinflammatory markers in perivascular adipose tissue (PVAT) and improves insulin signaling in aorta from db/db mice. Our findings highlight chemerin/ChemR23 system as a promising new therapeutic target to limit insulin resistance and vascular complications associated with obesity-related diabetes.
3

Papel do sistema chemerin/ChemR23 na sinalização vascular da insulina de camundongos C57BL/6J e db/db / Role of chemerin/ChemR23 system on vascular insulin signaling in C57BL/6J and db/db mice

Karla Bianca Neves 06 July 2016 (has links)
Chemerin e seu receptor (ChemR23) têm sido amplamente associados à disfunção endotelial, inflamação e resistência à insulina. No entanto, é ainda desconhecido se chemerin influencia diretamente a sinalização da insulina na vasculatura. A hipótese deste estudo é de que chemerin diminui a sinalização vascular da insulina, e que o uso de antagonista de ChemR23 (CCX 832) em um modelo de diabetes do tipo 2 relacionado à obesidade melhora as respostas vasculares a insulina. Mecanismos moleculares e vasculares foram investigados em artérias mesentéricas e células de músculo liso vascular em cultura (CMLV) de camundongos C57BL/6J, db/m (controles, não obesos, não diabéticos) e db/db (diabéticos, obesos), assim como em células endoteliais (CE) de humanos em cultura. Nossos resultados mostraram que chemerin diminui a vasodilatação induzida por insulina em camundongos C57BL/6J, efeito mediado por ChemR23, PI3K/Akt e estresse oxidativo. Em CMLV, chemerin, através de mecanismos dependentes de estresse oxidativo e ChemR23, diminui a fosforilação de IRS-1, PI3K e Akt e a translocação de GLUT4 para a membrana, induzidas por insulina. Chemerin também diminui a captação de glicose induzida por insulina via estresse oxidativo e ativação de AMPK e PI3K/Akt. Em CE, chemerin diminui a sinalização de óxido nítrico (NO) ativada pela insulina, novamente via ChemR23, estresse oxidativo e PI3K/Akt. CCX 832 diminui a massa corporal (sem alterar a ingestão de ração), os níveis de insulina e glicose (sem alterar a tolerância à glicose) e estresse oxidativo em aorta e rim de camundongos db/db. CCX 832 restaura parcialmente a disfunção vascular observada em camundongos db/db, sem modificar parâmetros estruturais destas artérias. Adicionalmente, CCX 832 diminui marcadores pró-inflamatórios em tecido adiposo perivascular (PVAT) e melhora a sinalização da insulina em aorta de camundongos db/db. Nossos achados destacam o sistema chemerin/ChemR23 como um novo e promissor alvo terapêutico para limitar a resistência à insulina e as complicações vasculares associadas ao diabetes relacionado à obesidade. / Chemerin and its G protein-coupled receptor (ChemR23) have been associated with endothelial dysfunction, inflammation and insulin resistance. Whether chemerin directly influences insulin signaling in the vasculature is unknown. We hypothesized that chemerin impairs vascular insulin signaling in obesity-related type 2 diabetes, effect that would be improved by the novel ChemR23 antagonist (CCX 832). Molecular and vascular mechanisms were probed in mesenteric arteries and cultured vascular smooth muscle cells (VSMC) from C57BL/6J, non-diabetic lean db/m and diabetic obese db/db mice as well as in human microvascular endothelial cells (EC). Chemerin decreased insulin-induced vasodilatation in C57BL/6J mice, effect mediated by ChemR23, PI3K/Akt and oxidative stress. In VSMC, chemerin, via oxidative stress- and ChemR23-dependent mechanisms, decreased insulin-induced IRS-1, PI3K and Akt phosphorylation, GLUT4 translocation to the membrane. In addition, chemerin decreases insulin-induced glucose uptake via oxidative stress and AMPK and PI3K/Akt activation. In EC, chemerin decreased insulin-activated nitric oxide (NO) signaling via ChemR23, oxidative stress and PI3K/Akt signaling pathway. CCX 832 decreases body weight (without altering food intake), insulin and glucose levels (without altering glucose tolerance) and oxidative stress in aorta and kidney from db/db mice. CCX 832 partially restored vascular dysfunction in db/db mice without modifying structural parameters. Additionally, CCX 832 decreases proinflammatory markers in perivascular adipose tissue (PVAT) and improves insulin signaling in aorta from db/db mice. Our findings highlight chemerin/ChemR23 system as a promising new therapeutic target to limit insulin resistance and vascular complications associated with obesity-related diabetes.
4

Efeito da adipocina chemerin na reabsorção ósseoa em modelo experimental de doença periodontal e hiperlipidemia / The adipokine chemerin effect on bone resorption in experimental model of periodontal disease and hyperlipidemia

Giselle de Angelo Leite Carbonaro Guerreiro 01 June 2015 (has links)
A periodontite é uma doença bucal infecto-inflamatória resultante da quebra da homeostase entre biofilme dentário e o hospedeiro. Diversos estudos tem mostrado que a obesidade e o sobrepeso são importantes fatores de risco para o desenvolvimento da doença periodontal. O tecido adiposo representa um reservatório de mediadores inflamatórios. A chemerin é uma adipocina secretada pelo tecido adiposo e atua em numerosos processos fisiológicos, como metabolismo, proliferação e diferenciação celular. Levando em consideração que alterações de adiposidade, observadas por medidas antropométricas, estão relacionadas com maior incidência de periodontite, e que chemerin, uma citocina produzida por adipócitos, está envolvida na resposta inflamatória, nota-se uma lacuna na literatura que correlacione o papel de chemerin na progressão da doença periodontal. Portanto, o presente projeto tem como objetivo avaliar a participação da adipocina chemerin no desenvolvimento da doença periodontal em camundongos hiperlipidêmicos e avaliar o efeito desta adipocina sobre a diferenciação e ativação de células ósseas. No estudo in vivo, os animais foram submetidos ao modelo experimental de hiperlipidemia e/ou periodontite e divididos em 4 grupos: Grupo I: camundongos controle. Grupo II: camundongos controle infectados pela Porphyromonas gingivalis (Pg). Grupo III: camundongos hiperlipidêmicos não infectados. Grupo IV: camundongos hiperlipidêmicos infectados pela Pg. As amostras foram coletadas depois de 15, 30 e 60 dias. No estudo in vivo, o modelo de dieta hiperlipidêmica adotado foi eficaz em aumentar os níveis circulantes de colesterol e chemerin, embora não tenha alterado o peso dos animais. Observa-se ainda maior adiposidade corporal mostrada pelo aumento de peso dos tecidos adiposos retroperitoneal e epididimal dos animais hiperlipidêmicos. Na análise morfométrica foi observada uma maior perda óssea no grupo hiperlipidêmico quando comparado ao controle e essa perda óssea foi semelhante ao observado no animal infectado por Pg. Foi observado que a expressão de chemerin na gengiva e plasma se correlacionam com marcadores de osteoclastos no tecido gengival e com a reabsorção alveolar. No estudo in vitro, foi observado que chemerin leva à maior formação de depósitos mineralizados em cultura de osteoblastos e maior reabsorção óssea em cultura de osteoclastos. Conclui-se que a hiperlipidemia provoca reabsorção óssea alveolar semelhante ao observado com infecção oral com P. gingivalis. Chemerin participa da reabsorção óssea alveolar visto que os níveis desta adipocina na gengiva e plasma se correlacionam com marcadores de osteoclastos no tecido gengival e com a reabsorção alveolar. Chemerin aumenta atividade de osteoblastos e osteoclastos in vitro. / Periodontitis is an infectious inflammatory oral disease resultant from the breaking of homeostasis between biofilm and the host. Several studies have shown that overweight and obesity are major risk factors for the development of periodontal disease. Adipose tissue is a reservoir of inflammatory mediators. The chemerin is an adipokine secreted by adipose tissue and acts in numerous physiological processes, such as metabolism, proliferation and differentiation. Considering that adiposity changes, observed by anthropometric measurements, are related to higher incidence of periodontitis, and chemerin, a cytokine produced by adipocytes, is involved in the inflammatory response, there is a gap in the literature that correlates the paper chemerin in the progression of periodontal disease. Therefore, this project aims to evaluate the participation of chemerin adipokine in the development of periodontal disease in hyperlipidemic mice and evaluate the effect of this adipokine on the differentiation and activation of bone cells. In the in vivo study, the animals underwent to the experimental model of hyperlipidemia and / or periodontitis and divided into 4 groups: Group I: control mice. Group II: control mice infected with Porphyromonas gingivalis (Pg). Group III: hyperlipidemic mice not infected. Group IV: hyperlipidemic mice infected by Pg. Samples were collected after 15, 30 and 60 days. In the in vivo study, the model of hyperlipidemic diet adopted was effective in increasing circulating levels of cholesterol and chemerin, although it has not changed the weight of the animals. Greater body adiposity shown by the increased weight of the retroperitoneal and epididymal adipose tissues of hyperlipidemic animals was observed. In morphometric analysis, we observed an increased bone loss in hyperlipidemic group compared to the control and that this bone loss was similar to the observed in animals infected with Pg. It was observed that the gum chemerin expression and plasma correlate with markers of osteoclast in the gingival tissue and alveolar resorption. In the in vitro study, it was observed that chemerin leads to increased formation of mineralized deposits in cultured osteoblasts and increased bone resorption in osteoclast culture. It concludes that hyperlipidemia causes alveolar bone resorption similar to that observed on oral infection with P. gingivalis. Chemerin participates in alveolar bone resorption, at the levels of this adipokine gum and plasma correlate with osteoclast markers in gingival tissue and alveolar resorption. Chemerin increases osteoblast activity and osteoclasts in vitro.
5

Deciphering the contribution of chemerin signaling in the homeostasis of the pulmonary circulation

Hanthazi, Alienor 03 September 2021 (has links) (PDF)
La chémérine est une adipokine, initialement décrite comme jouant des rôles centraux dans la régulation de l’adipogenèse, du métabolisme énergétique et de la réponse immunitaire. Plus récemment, elle a été incriminée dans le contrôle de la pression systémique, agissant sur le tonus et le remodelage des artères systémiques. La chémérine interagit avec les cellules en se fixant sur trois récepteurs, le CMKLR1 (chemokine like receptor 1), GPR1 (G protein- coupled receptor 1) et CCRL2 (C-C chemokine receptor-like 2). Le CMKLR1, est le récepteur principalement associé à la signalisation de la chémérine, et a été identifié sur plusieurs types cellulaires (tels que cellules endothéliales et musculaires lisses vasculaires, cellules inflammatoires) jouant des rôles-clés dans la pathogénèse de l’hypertension artérielle pulmonaire. Le but du présent travail était d’évaluer les effets de la chémérine sur la circulation pulmonaire, ainsi que dans le développement de l'hypertension pulmonaire.Nous avons d’abord étudié les effets de la chémérine sur la réactivité artérielle pulmonaire ex vivo et sur les mécanismes impliqués dans le remodelage artériel pulmonaire, plus particulièrement la prolifération, l’apoptose et la migration des cellules musculaires lisses artérielles pulmonaires in vitro. Ces mécanismes jouent des rôles centraux dans la pathogenèse de l'hypertension artérielle pulmonaire. La réponse des artères pulmonaires a été comparée à celle de l’aorte thoracique. L'expression de la chémérine et de ses 3 récepteurs, évaluée par real-time quantitative polymerase chain reaction (RTq-PCR), a été mis en évidence au sein de l'artère pulmonaire et de l'aorte thoracique, ainsi que dans des cultures primaires de cellules musculaires lisses artérielles pulmonaires isolées à partir de rats Wistar. L’expression de CMKLR1 était plus élevée par rapport à celles de CCRL2 et GPR1 et le CMKLR1 était exprimé en plus grande quantité dans l’artère pulmonaire que dans l’aorte thoracique. La chémérine et le CMKLR1 étaient exprimés par les cellules présentes dans les 3 couches de l'artère pulmonaire et de l'aorte thoracique (à savoir dans l’intima, la media et l’adventice), ainsi que dans le parenchyme pulmonaire. Nous avons ensuite étudié ex vivo la vasoréactivité des artères pulmonaire et thoracique (pour lesquelles l’endothélium avait été conservé ou éliminé) isolées à partir de rats Wistar à la chémérine seule ou en association avec un autre agent vasoconstricteur, incluant la phényléphrine, la sérotonine et l'endothéline-1. La chémérine augmentait le tonus vasculaire des artères pulmonaires sans endothélium et potentialisait la vasoconstriction induite par la phényléphrine, la sérotonine et l'endothéline-1 dans les deux types d’artères, effet renforcé en l’absence d'endothélium. Dans les artères avec endothélium, le prétraitement à la chémérine diminuait la vasorelaxation induite par l’acétylcholine, alors qu'elle n'avait pas d’effets sur la vasorelaxation induite par le nitroprussiate de sodium (SNP), un donneur d’oxyde nitrique (NO). En présence du NG-nitro-L-arginine methyl ester hydrochloride (L-NAME), un inhibiteur de l’enzyme impliquée dans la synthèse du NO (NO- synthase, NOS), une vasorelaxation persistait dans les artères prétraitées à la chémérine. Le traitement par la chémérine ou par l’inhibiteur de la guanylate cyclase soluble (ODQ :1H- [1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one) seuls, diminuait partiellement la vasorelaxation induite par l'acétylcholine dans l'artère pulmonaire et l'aorte thoracique, alors que l'incubation combinée de la chémérine et de l'ODQ l'abollissait totalement. Le traitement avec l'apocynine, un inhibiteur de la production des espèces oxygénées radicalaires (ROS), inversait, en partie ou totalement respectivement, les effets de la chémérine. Dans les deux types d’artères, la production de NO induite par l'acétylcholine, ainsi que l'expression des synthases du NO (NOS endothéliale et inductible), étaient réduites par la chémérine. Dans les cultures primaires de cellules musculaires lisses d’artère pulmonaire et d’aorte thoracique de rat, nous avons évalué les effets de la chémérine seule ou en association avec l'endothéline-1, sur la prolifération, la migration et la résistance à l'apoptose. La chémérine associée à l'endothéline-1 augmentait la prolifération, évaluée par l'incorporation de BrdU (5-bromo-2’-deoxyuridine), alors la chémérine ou à l'endothéline-1 seules n’avait pas d’effets. La chémérine induisait la migration des cellules musculaires lisses d’artère pulmonaire et d’aorte thoracique. Cet effet était exacerbé par l'endothéline-1. La chémérine réduisait, de manière concentration-dépendante, l’apoptose induite par la staurosporine et évaluée par cytométrie de flux après double marquage des cellules à l’annexine V et à l’iodure de propidium. Le rapport pro-apoptotique Bax/Bcl2 était également diminué. Dans les cellules musculaires lisses artèrielles pulmonaires, l'endothéline- 1 augmentait l'expression de CMKLR1, CCRL2 et GPR1, alors que ces expressions n'étaient pas modifiées dans les cellules musculaires lisses d’aorte thoracique. En revanche, la chémérine n'induisait aucune modification de l'expression des récepteurs de l'endothéline A et B (ETA et ETB) et ne modifiait pas l'expression de l'interleukine(IL)-6 et de son récepteur IL-6R et de l’IL-1β, alors que l’expression du TNF-α (tumor necrosis factor-alpha) était augmentée par le traitement par la chémérine (10-7 mol/L) dans cellules musculaires lisses d’artère pulmonaire.Ensuite, des mesures invasives, par cathétérisme cardiaque droit, ont été réalisées chez des souris transgéniques déficientes en CMKLR1 (CMLKR1−/−) et des souris wildtype (WT; CMKLR1+/+) en normoxie et après une exposition chronique à l’hypoxie (10% d’oxygène) pendant 3 semaines, afin d’évaluer l'implication du CMKLR1 dans la physio(patho)logie de la circulation pulmonaire. Les résultats préliminaires montraient que les souris CMKLR1−/− présentaient, en normoxie, une élévation de la pression systolique du ventricule droit et de l’indice de Fulton [poids du ventricule droit/ poids des ventricule gauche + septum interventriculaire] suggérant une hypertension pulmonaire et une hypertrophie ventriculaire droite. Les poids des poumons et du coeur étaient diminués chez les souris CMKLR1−/−. L'exposition chronique à l'hypoxie augmentait la pression systolique du ventricule droit et l'indice de Fulton de manière similaire chez les souris CMKLR1−/− et WT.En conclusion, la chémérine potentialise la vasoconstriction induite par des agents vasoconstricteurs, tels que l’endothéline-1 et la sérotonine, et réduit la vasodilatation induite par l'acétylcholine dans l’artère pulmonaire, via notamment le NO et le stress oxydatif. La chémérine associée à l’endothéline-1, un médiateur-clé de la pathogenèse des maladies hypertensives pulmonaires, induit la prolifération et la migration, et augmente la résistance à l'apoptose des cellules musculaires lisses artérielles pulmonaires de rat. Ces résultats suggèrent que la chémérine influence l'homéostasie de la circulation pulmonaire et pourrait renforcer les actions de médiateurs impliqués dans la pathogenèse de l'hypertension pulmonaire, comme l'endothéline-1 et la sérotonine, tant au niveau de la contraction que du remodelage artériel pulmonaire. Les souris déficientes en CMKLR1 présentent une légère hypertension pulmonaire, associée à une hypertrophie du ventricule droit en normoxie. Ce phénotype n’est pas agravé par une exposition chronique à l’hypoxie. Ces résultats préliminaires in vivo doivent être complétés pour mieux comprendre les mécanismes sous-jacents.Chemerin has been identified as a vasoactive adipokine implicated in systemic pressure regulation. Chemerin has also been shown to increase proliferation and migration of systemic vascular smooth muscle cells. Chemokine-like receptor 1 (CMKLR1), the major known signaling receptor of chemerin, is present on different cell types such as vascular endothelial and smooth muscle cells, immune and inflammatory cells, all of these cells playing crucial roles in the pathogenesis of pulmonary arterial hypertension. These observations led us to suggest that chemerin could play a role in pulmonary circulation homeostasis and that alterations of this signaling pathway could participate to the development of pulmonary hypertension.In the first part of the present research project, we studied the effects of chemerin on pulmonary circulation, evaluating its impact on pulmonary artery reactivity ex vivo and on pulmonary artery smooth muscle cell proliferation, apoptosis and migration in vitro. These mechanisms have all been incriminated in the pathophysiological development of pulmonary arterial hypertension. Pulmonary circulation (pulmonary artery) was compared to systemic circulation (thoracic aorta). Expression of chemerin and its three receptors [CMKLR1, G protein-coupled receptor 1 (GPR1) and C-C chemokine receptor-like 2 (CCRL2)], evaluated by real-time quantitative polymerase chain reaction (RTq-PCR), were identified in pulmonary artery and thoracic aorta, and in cultured pulmonary artery smooth muscle cells from Wistar rats, with higher expression of CMKLR1 compared to CCRL2 and GPR1 and higher expression of CMKLR1 in pulmonary artery than in thoracic aorta. Chemerin and CMKLR1 expressions were localized (by immunohistochemistry) in the 3 layers of pulmonary artery and thoracic aorta, as well as in lung parenchyma. Thereafter, we studied ex vivo vasoreactivity in rat endothelium-denuded and -intact arteries to chemerin alone or in association with a vasoconstrictor, including phenylephrine serotonin and endothelin-1. Chemerin increased vascular tone in endothelium-denuded pulmonary artery and potentiated phenylephrine-, endothelin-1- and serotonin-induced vasoconstriction in both pulmonary artery and thoracic aorta, which was further enhanced by endothelium removal. In endothelium-intact arteries, chemerin pretreatment decreased acetylcholine-induced vasorelaxation, while it did not affect relaxation induced by sodium nitroprusside (SNP), a nitric oxide (NO) donor. In presence of a the NO-synthase inhibitor (NG-nitro-L-arginine methyl ester hydrochloride: L-NAME), there remained a vasorelaxation in chemerin-pre-treated arteries, suggesting that chemerin could potentiate another vasodilating pathway. Treatment with chemerin or a soluble guanylate cyclase inhibitor (1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one: ODQ) alone partly decreased acetylcholine-induced vasorelaxation in pulmonary artery and thoracic aorta, while combined chemerin and ODQ incubation abolished it. Treatment with apocynin, a ROS production inhibitor, partly or totally reversed chemerin effects. In both types of arteries, acetylcholine- induced NO production, as well as endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) gene expression, were reduced by chemerin. In primary cultured smooth muscle cells isolated from rat pulmonary arteries and thoracic aorta by the explant technique, we evaluated the effects of chemerin alone or in association with endothelin-1, on proliferation, migration and resistance to apoptosis. Chemerin added to endothelin-1 increased proliferation, assessed by 5-bromo-2’-deoxyuridine (BrdU) incorporation, while chemerin or endothelin-1 alone did not. This effect was less pronounced in thoracic aorta smooth muscle cells. Migration assessed by the Transwell migration assay, showed that chemerin induced migration of rat pulmonary artery and thoracic aorta smooth muscle cells. This effect was exacerbated in presence of endothelin-1 and more pronounced in thoracic aorta smooth muscle cells. In both cell types, chemerin concentration-dependently reduced staurosporine-induced apoptosis, assessed, by flow cytometry, in annexinV and propidium iodure-stained cells. Pro-apoptotic Bcl2 associated X (Bax)-to-Bcl2 apoptosis regulator (Bcl2) ratio was accordingly decreased. In pulmonary artery smooth muscle cells, endothelin-1 treatment increased relative gene expression of CMKLR1, CCRL2 and GPR1, while these expressions were not altered in thoracic aorta smooth mucle cells. In contrast, chemerin did not alter expression of endothelin receptors A and B (ETA and ETB) and chemerin did not alter gene expression of interleukin-6 (IL-6), its receptor IL-6R and interleukin-1beta (IL-1β) but tumor necrosis factor-alpha (TNF-α) was increased with 10-7 mol/L chemerin in pulmonary artery smooth muscle cells.In the second part of the project, we studied the pulmonary circulation in transgenic CMKLR1-knockout mice (CMLKR1−/−) and challenged it by chronic hypoxia exposure (FiO2 of 10%) during 3 weeks to asses the implication of chemerin/CMKLR1 signaling in the development of pulmonary hypertension. This part of the project is still ongoing. Preliminary results showed that CMKLR1−/− mice presented, in normoxia, higher right ventricular systolic pressure, increased Fulton index [assessed by the ratio of the weights of the right ventricle to the (left ventricle + interventricular septum) weight] showing right ventricular hypertrophy, together with lower lung and heart weights. Chronic hypoxia exposure increased right ventricular systolic pressure and Fulton index similarly in both transgenic and WT mice.In conclusion, chemerin potentiated vascular responses to vasoconstrictors (endothelin- 1 and serotonin) and impaired acetylcholine-induced vasodilatation in pulmonary artery, by mechanisms involving at least partly NO signaling and oxidative stress. Chemerin, together with a key mediator involved in the pathogenesis of pulmonary hypertensive diseases, endothelin-1, stimulated proliferation and migration, and increased resistance to apoptosis in rat primary cultured pulmonary artery smooth muscle cells. Altogether, these results suggest that chemerin influences rat pulmonary circulation homeostasis, and could reinforce the actions of mediators implicated in the pathogenesis of pulmonary hypertension, such as endothelin-1 and serotonin, in pulmonary artery contraction and remodeling. Knocking-out CMKLR1 signaling in mice was associated with mild pulmonary hypertension, in animals presenting lower lung and heart weights. These preliminary in vivo results have to be completed to understand better underlying mechanisms. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
6

Efeito da adipocina chemerin sobre a reatividade vascular: análise em aortas de rato / Effects of the adipokine chemerin on the vascular reactivity: analysis in the rat aorta

Neves, Karla Bianca 12 September 2012 (has links)
Embora seja na obesidade onde se observa hipertrofia e hiperplasia dos adipócitos e aumento da síntese e liberação de adipocinas, condição associada com resistência à insulina e disfunção endotelial, é de suma importância entender os efeitos biológicos de adipocinas, mais especificamente da adipocina chemerin, em condições não patológicas. Os mecanismos pelos quais as citocinas liberadas pelo tecido adiposo podem interferir na função vascular ainda não estão totalmente esclarecidos. Além disso, praticamente não se conhecem os efeitos da citocina/adipocina chemerin sobre a função vascular. Levando-se em consideração que o receptor para chemerin está presente no músculo liso vascular e no endotélio, este trabalho avaliou a atividade biológica e celular desta adipocina sobre a vasculatura de animais não obesos. Investigou-se os efeitos produzidos por esta citocina na reatividade vascular, bem como os mecanismos pelos quais ela modifica a função vascular em animais não obesos. A hipótese deste trabalho é que chemerin aumenta a reatividade vascular a estímulos constritores de endotelina-1 (ET-1) e fenilefrina (PhE) e diminui a vasodilatação induzida pela acetilcolina (ACh) e nitroprussitao de sódio (NPS). Nossos objetivos específicos incluíram determinar: 1) se chemerin promove alterações na reatividade vascular; 2) se as alterações de reatividade vascular promovidas por chemerin são mediadas por modificações da função das células endoteliais ou células de músculo liso vascular; 3) quais vias de sinalização (foco na via das MAPKs) estão sendo modificadas por chemerin e como elas contribuem para as alterações de reatividade vascular produzidas por esta citocina. Nosso estudo demonstrou que a adipocina chemerin possui atividade biológica e celular em aortas de ratos não obesos. Chemerin aumentou respostas vasculares a estímulos contráteis (ET-1 e PhE), atuando tanto no endotélio quanto diretamente em células do músculo liso vascular. O aumento da resposta a estímulos contráteis à ET-1 e PhE foi mediado pela via MEK-ERK1/2, COX-1 e COX-2 e aumento da expressão dos receptores para ET-1, ETA e ETB. Além disso, esta adipocina diminuiu a vasodilatação induzida pela ACh, por meio do desacoplamento da eNOS e aparente envolvimento de estresse oxidativo, e pelo NPS, através de ação sobre a guanilato ciclase. Nossos estudos poderão contribuir para um melhor entendimento sobre o papel dos fatores liberados pelo tecido adiposo visceral sobre a função vascular e, consequentemente, sobre as alterações vasculares presentes na obesidade e patologias associadas. / Although hypertrophy and hyperplasia of adipocytes as well as increased synthesis and release of adipokines are commonly observed in obesity, a condition associated with insulin resistance and endothelial dysfunction, it is extremely important to understand the biological effects of adipokines, or more specifically of the adipokine chemerin, in non-pathological conditions,. The mechanisms by which cytokines released by the adipose tissue may interfere with vascular function are not yet fully understood. Furthermore, the effects of the cytokine/adipokine chemerin on vascular function are not known. Considering that the chemerin receptor is expressed by vascular smooth muscle and endothelial cells, this study investigated the effects produced by this cytokine in vascular reactivity, as well as the mechanisms by which it modifies vascular function in non-obese animals. Our working hypothesis is that chemerin enhances vascular reactivity to constrictor stimuli, such as endothelin-1(ET-1) and phenylephrine (Phe), and decreases the vasodilation induced by acetylcholine (ACh) and sodium nitroprussiate (SNP). Our specific aims were to determine: 1) whether chemerin induces changes in vascular reactivity, 2) if the alterations of vascular reactivity induced by chemerin are mediated by changes in the function of endothelial cells or vascular smooth muscle cells, 3) which signaling pathways (focus on the MAPKs pathway) are being modified by chemerin and how they contribute to changes in vascular reactivity produced by this cytokine. Our study showed that the adipokine chemerin has biological and cellular activity in aortas from non-obese rats. Chemerin increased vascular responses to contractile stimuli (ET-1 and PhE), producing effects both in the endothelial and vascular smooth muscle cells. The increased contractile responses to ET-1 and PhE were mediated via activation of MEK-ERK1/2, COX-1 and COX-2 and increased expression of the ETA and ETB receptors. Furthermore, this adipokine reduced the vasodilation induced by ACh via eNOS uncoupling and oxidative stress, and by SNP, via effects in the enzyme guanylate cyclase. Our studies may contribute to a better understanding of the role of factors released by the visceral adipose tissue on vascular function and, consequently, on the vascular lesions in obesity and obesity-associated diseases.
7

Efeito da adipocina chemerin sobre a reatividade vascular: análise em aortas de rato / Effects of the adipokine chemerin on the vascular reactivity: analysis in the rat aorta

Karla Bianca Neves 12 September 2012 (has links)
Embora seja na obesidade onde se observa hipertrofia e hiperplasia dos adipócitos e aumento da síntese e liberação de adipocinas, condição associada com resistência à insulina e disfunção endotelial, é de suma importância entender os efeitos biológicos de adipocinas, mais especificamente da adipocina chemerin, em condições não patológicas. Os mecanismos pelos quais as citocinas liberadas pelo tecido adiposo podem interferir na função vascular ainda não estão totalmente esclarecidos. Além disso, praticamente não se conhecem os efeitos da citocina/adipocina chemerin sobre a função vascular. Levando-se em consideração que o receptor para chemerin está presente no músculo liso vascular e no endotélio, este trabalho avaliou a atividade biológica e celular desta adipocina sobre a vasculatura de animais não obesos. Investigou-se os efeitos produzidos por esta citocina na reatividade vascular, bem como os mecanismos pelos quais ela modifica a função vascular em animais não obesos. A hipótese deste trabalho é que chemerin aumenta a reatividade vascular a estímulos constritores de endotelina-1 (ET-1) e fenilefrina (PhE) e diminui a vasodilatação induzida pela acetilcolina (ACh) e nitroprussitao de sódio (NPS). Nossos objetivos específicos incluíram determinar: 1) se chemerin promove alterações na reatividade vascular; 2) se as alterações de reatividade vascular promovidas por chemerin são mediadas por modificações da função das células endoteliais ou células de músculo liso vascular; 3) quais vias de sinalização (foco na via das MAPKs) estão sendo modificadas por chemerin e como elas contribuem para as alterações de reatividade vascular produzidas por esta citocina. Nosso estudo demonstrou que a adipocina chemerin possui atividade biológica e celular em aortas de ratos não obesos. Chemerin aumentou respostas vasculares a estímulos contráteis (ET-1 e PhE), atuando tanto no endotélio quanto diretamente em células do músculo liso vascular. O aumento da resposta a estímulos contráteis à ET-1 e PhE foi mediado pela via MEK-ERK1/2, COX-1 e COX-2 e aumento da expressão dos receptores para ET-1, ETA e ETB. Além disso, esta adipocina diminuiu a vasodilatação induzida pela ACh, por meio do desacoplamento da eNOS e aparente envolvimento de estresse oxidativo, e pelo NPS, através de ação sobre a guanilato ciclase. Nossos estudos poderão contribuir para um melhor entendimento sobre o papel dos fatores liberados pelo tecido adiposo visceral sobre a função vascular e, consequentemente, sobre as alterações vasculares presentes na obesidade e patologias associadas. / Although hypertrophy and hyperplasia of adipocytes as well as increased synthesis and release of adipokines are commonly observed in obesity, a condition associated with insulin resistance and endothelial dysfunction, it is extremely important to understand the biological effects of adipokines, or more specifically of the adipokine chemerin, in non-pathological conditions,. The mechanisms by which cytokines released by the adipose tissue may interfere with vascular function are not yet fully understood. Furthermore, the effects of the cytokine/adipokine chemerin on vascular function are not known. Considering that the chemerin receptor is expressed by vascular smooth muscle and endothelial cells, this study investigated the effects produced by this cytokine in vascular reactivity, as well as the mechanisms by which it modifies vascular function in non-obese animals. Our working hypothesis is that chemerin enhances vascular reactivity to constrictor stimuli, such as endothelin-1(ET-1) and phenylephrine (Phe), and decreases the vasodilation induced by acetylcholine (ACh) and sodium nitroprussiate (SNP). Our specific aims were to determine: 1) whether chemerin induces changes in vascular reactivity, 2) if the alterations of vascular reactivity induced by chemerin are mediated by changes in the function of endothelial cells or vascular smooth muscle cells, 3) which signaling pathways (focus on the MAPKs pathway) are being modified by chemerin and how they contribute to changes in vascular reactivity produced by this cytokine. Our study showed that the adipokine chemerin has biological and cellular activity in aortas from non-obese rats. Chemerin increased vascular responses to contractile stimuli (ET-1 and PhE), producing effects both in the endothelial and vascular smooth muscle cells. The increased contractile responses to ET-1 and PhE were mediated via activation of MEK-ERK1/2, COX-1 and COX-2 and increased expression of the ETA and ETB receptors. Furthermore, this adipokine reduced the vasodilation induced by ACh via eNOS uncoupling and oxidative stress, and by SNP, via effects in the enzyme guanylate cyclase. Our studies may contribute to a better understanding of the role of factors released by the visceral adipose tissue on vascular function and, consequently, on the vascular lesions in obesity and obesity-associated diseases.
8

Auswirkungen eines 12monatigen kontrollierten Trainingsprogramms auf die Chemerin-Serumkonzentration sowie Parameter des Glukosestoffwechsels bei Patienten mit Typ 2 Diabetes

Raschpichler, Matthias 21 November 2011 (has links) (PDF)
Typ 2 Diabetes gehört zu den häufigsten Stoffwechselkrankheiten in Deutschland. Zur Basistherapie des Typ 2 Diabetes gehören eine gesunde Ernährungsweise und die Erhöhung der körperlichen Aktivität. Körperliches Training führt insbesondere bei Patienten mit Typ 2 Diabetes neben der Verbesserung der körperlichen Leistungsfähigkeit zu einer Reihe metabolischer Veränderungen, wie zur Reduktion der Fettmasse, zur Verbesserung von chronischer Hyperglykämie, des Lipidstoffwechsels und des atherogenen, pro-inflammatorischen Adipokin-Serumprofils. Chemerin ist ein erst kürzlich identifiziertes 16 kDa großes Adipokin, dessen Serumkonzentrationen bei Adipositas und Typ 2 Diabetes erhöht sind. Ziel dieser Arbeit war es deshalb, die Auswirkungen eines 12monatigen, kontrollierten, praxisnahen, kombinierten Kraft-Ausdauer-Trainingsprogramms auf die Chemerin-Serumkonzentration, das Körpergewicht, sowie Parameter des Glukosestoffwechsels (Nüchtern-Plasmaglukose, HbA1c, Nüchterninsulin, HOMA) bei Patienten mit Typ 2 Diabetes zu untersuchen. Zusätzlich wurde die Chemerin mRNA-Expression im humanen omentalen und subkutanen Fettgewebsproben von 79 Patienten charakterisiert und bei 15 Patienten der Einfluß eines Gewichtsverlustes von 45,3 ± 7,4kg ein Jahr nach bariatrischer Chirurgie auf zirkulierende Chemerin-Werte untersucht. Für die prospektive offene Interventionsstudie wurden initial 710 Patienten mit Typ 2 Diabetes untersucht, von denen 156 die Ein- und Ausschlusskriterien für die Studie erfüllten. Es wurden die Daten von 120 Patienten (77 Frauen, 43 Männer) analysiert, von denen nach Abschluss des 12monatigen Trainingsprogramms vollständige Datensätze vorlagen. Die Patienten trainierten zweimal pro Woche für jeweils 60 ± 15 Minuten bei 50-70% ihrer individuellen maximalen Leistungsfähigkeit, die zu Beginn der Studie mittels Spiroergometrie ermittelt wurde. Die Messung der Zielparameter erfolgte vor Beginn der Intervention, sowie nach 3, 6 und 12 Monaten körperlichen Trainings. Das 12monatige Trainingsprogramm führte zu einer signifikanten Reduktion der Chemerin-Serumkonzentration und zu signifikanten Verbesserungen der Nüchterninsulin-Serumkonzentrationen und des HOMA-Index´, während sich die Nüchtern-Plasmaglukose und der HbA1c-Wert kaum veränderten. Die signifikanten Veränderungen waren unabhängig von der Entwicklung des Körpergewichts, das sich im Verlauf der Studie nicht signifikant veränderte. Die Chemerinserumkonzentration war geschlechtsabhängig und bei Patienten mit T2D höher als bei gesunden Kontrollpatienten. Sie korrelierte mit dem BMI, dem Körperfettgehalt, dem HbA1c, Serum Triglyzerid- sowie hsCrP-Spiegeln und wird durch starken Gewichtsverlust nach einer bariatrischen Operation signifikant gesenkt. Außerdem konnte ein signifikanter Zusammenhang der omentalen Chemerin mRNA-Expression mit dem BMI, der Hyperinsulinämie, der Adipozytengröße, der Serum-Chemerin- und CrP-Konzentration nachgewiesen werden. Zusammengefasst zeigt die Untersuchung, dass die bei Patienten mit Typ 2 Diabetes deutlich erhöhte Chemerin-Serumkonzentration parallel zur Verbesserungen der Leistungsfähigkeit und Insulinsensitivität (Sportprogramm) auch durch eine signifikante BMI-Reduktion (Adipositas-Chirurgie) gesenkt werden kann.
9

CHEMERIN REGULATES ADIPOSITY AND ENERGY HOMEOSTASIS

Ernst, Matthew 14 October 2011 (has links)
Obesity, characterized by an excess of adipose tissue, is an established risk factor for cardiovascular disease and type II diabetes. Different mechanisms linking obesity with these comorbidities have been postulated but remain poorly understood. Adipose tissue secretes bioactive signaling molecules, termed adipokines, which regulate various biological functions including appetite, energy balance, glucose homeostasis, and inflammation. Chemerin is a novel adipokine that regulates adipocyte differentiation and metabolism by binding to and activating the G protein-coupled receptor chemokine like receptor-1 (CMKLR1). Herein, we have shown that serum levels of the novel adipokine chemerin are significantly elevated in mouse models of obesity/diabetes. Administration of exogenous chemerin exacerbates glucose intolerance, lowers serum insulin levels, and decreases tissue glucose uptake in obese/diabetic but not normoglycemic mice. In CMKLR1-deficient mice food consumption, total body mass, and percent body fat are lower compared to wildtype controls, regardless of diet (low or high fat). CMKLR1-/- mice also exhibited decreased hepatic and white adipose tissue TNF? and IL-6 mRNA levels coincident with decreased hepatic dendritic cell infiltration, decreased adipose CD3+ T cells and increased adipose natural killer cells. CMKLR1-/- mice were also glucose intolerant compared to wildtype mice, and this was associated with decreased glucose stimulated insulin secretion as well as decreased skeletal muscle and white adipose tissue glucose uptake. Collectively, these data provide compelling evidence that chemerin/CMKLR1 signaling influences adipose tissue development, inflammation, and glucose homeostasis and may contribute to the metabolic derangements characteristic of obesity and obesity-related diseases.
10

Tumor necrosis factor-{alpha} amplifies adipose-derived chemerin production and bioactivation

Parlee, Sebastian Demian 09 December 2011 (has links)
Due to its escalating prevalence, obesity is becoming a leading cause of morbidity and mortality worldwide. Obesity is a complex health problem accompanied by metabolic abnormalities and low-grade inflammation that increases the risk for developing comorbidities including type 2 diabetes. Recent evidence supports a role for fat (adipose) tissue derived factors, called adipokines, in the development of obesity and obesity-related metabolic pathologies. Chemerin is an adipokine that mediates immune and metabolic effects through the chemokine-like receptor 1 (CMKLR1). Chemerin is secreted as an inactive proform, prochemerin, which subsequently undergoes enzymatic cleavage into multiple chemerin products that differentially activate CMKLR1. Multiple studies have reported elevated total chemerin (a combination of prochemerin and various chemerin products) in obese humans suggesting chemerin involvement in obesity pathophysiology. However, the observational nature of these human studies have restricted them from identifying specific forms of chemerin that are elevated in obesity and the mechanisms that govern them. Herein, I have reported that the levels of both serum total chemerin and chemerin products capable of activating CMKLR1 are elevated in obese mice and in wild type mice following treatment with an obesity-associated inflammatory mediator tumor necrosis factor-? (TNF?). Likewise, cultured adipocytes produced active chemerin under basal conditions and highly active chemerin following TNF? treatment as measured by CMKLR1 activation. The current belief is that prochemerin circulates through blood primed for activation by immune and fibrinolytic enzymes present within injured tissues. My results challenge this theory, identifying adipocytes as cells alone produce and proteolytically activate chemerin. Under basal conditions, a balance between activating serine proteases and deactivating aminopeptidases governed the amount of CMKLR1-activating chemerin formed by adipocytes. Treatment of adipocytes with TNF? elevated the levels of serine proteases elastase and tryptase, which cumulatively shifted the proteolytic balance toward the production of chemerin products that highly activate CMKLR1. Taken together, my results are the first to identify that local TNF? triggers increased adipocyte production of chemerin providing an explanation for the elevated concentrations of chemerin in obese animals and humans. Furthermore, adipocyte processing represents a novel mechanism that likely governs the amount and type of circulating chemerin in obesity.

Page generated in 0.4567 seconds