Spelling suggestions: "subject:"bohemical industries"" "subject:"semichemical industries""
1 |
Critical Success Factors of Implementing e-Purcurement in Chemical IndustriesWu, Mei-Chi 08 July 2003 (has links)
Abstract
Facing the increasing competitive global market, many businesses are looking for ways to utilize their resources efficiently so as to survive and make profits. To this end, e-Business has promised to provide a solution. Among the various aspects e-Business has addressed, e-Procurement has been shown to be a critical part since it has the potential of cutting cost, enabling the entire operation to become profitable.
This thesis focuses on key factors to implement e-Procurement in both IT industries and Chemical industries. We analyze the two industries from five perspectives: strategy, organization, technology, environment, and performance. The successful experiences of IT industries in Taiwan give some useful directions to Chemical industries that just seek to implement e-Procurement.
This research on Chemical industries has found the following five critical success factors :
(1) Support from top management¡GTop management must fully support this project in human resource and financial aspects. In addition, authorization is also required to enable employees to be responsible for their decisions.
(2) Setting up a team¡GAsk related departments to join this project team and assign a team leader for decision-making, plan-execution and intra-company communication.
(3) Coordination of operation process¡GDraw a scale of the project, collect current operation process, consider the new process from the whole company viewpoint. And then, carry out the new process step by step.
(4) Supply chain integration¡G e-Procurement is to integrate suppliers and customers, and to create a deep collaboration relationship among these strategic partners. A fully communication in advance among them is the key to get the ¡§win-win¡¨ situation.
(5) Industrial environment: E-Procurement system is highly related to the level of
computerization and the frequency of transactions among businesses. The level
of computerization in businesses of different industries may be very different,
and makes the effects of implementing E-Procurement system different.
|
2 |
Etude des effets dominos sur une zone industrielle / Study of domino effect in an industrial areaAlileche, Nassim 14 December 2015 (has links)
Les effets dominos ou cascade d’événements dans les industries et particulièrement dans les industries chimiques et de transformation, sont reconnus comme des scénarios d’accidents possibles depuis environ trois décennies. Ils représentent une préoccupation croissante, car ils ont le potentiel de provoquer des conséquences dévastatrices. L’effet domino, comme phénomène, est un sujet controversé lorsque son évaluation est nécessaire. L’examen de la bibliographie a démontré l’absence d’une définition commune et d’une procédure simple d’utilisation et précise pour son appréciation. C’est pourquoi l’un des objectifs de cette recherche est de formaliser les connaissances relatives aux effets dominos afin de comprendre les mécanismes de leurs occurrences. Pour ce faire nous avons étudié les paramètres à examiner pour déterminer la possibilité de cascade et être en mesure d’identifier les scénarios dominos. L’enjeu étant de permettre l’amélioration de la prévention du risque d’effet domino. L’autre objectif est donc de produire une méthode pour l’identification et l’analyse des effets dominos. Nous avons développé une méthodologie globale pour l’étude des effets dominos en chaîne initiés par des pertes de confinement. Elle permet l’identification et la hiérarchisation des chemins de propagation des accidents. Cette méthode facilite la prise de décision pour la prévention des effets dominos, tout en proposant un outil efficace et simple d’utilisation. Les résultats de l’étude sont fournis sous forme d’une hiérarchisation quantitative des équipements impliqués dans les scénarios dominos, en tenant compte des effets des conditions météorologiques et des mesures de maîtrise des risques existantes ou proposées.Cette hiérarchisation donne une idée claire des dangers que représentent les équipements par rapport aux accidents en cascade, en précisant si la dangerosité de l’équipement provient de sa capacité à initier ou à propager un effet de cascade.La méthode est basée sur une description topographique de la zone étudiée, incluant les caractéristiques de chaque équipement, et prend en compte les mesures de maîtrise des risques mises en œuvre par l’industriel. Elle repose sur deux phases principales : La première, est l’identification des chemins de propagation des accidents. Pour ce faire, la méthode d’analyse par arbre d’événements est utilisée. Les cibles potentielles sont déterminées en combinant les valeurs seuils d’escalade et les modèles de vulnérabilité (pour l’estimation de la probabilité d’endommagement). Cette première phase est implémentée sous MATLAB® et Visual Basic for Applications (VBA) afin de faciliter l’entrée des données, et l’analyse des résultats dans Microsoft Excel®. La deuxième phase est l’identification des équipements les plus dangereux vis-à-vis des effets dominos. Elle consiste à hiérarchiser les équipements impliqués dans les chemins de propagation, en fonction de leur vraisemblance à causer ou à propager un effet domino. L’algorithme qui effectue cette phase est codé sous VBA. La méthode a été conçue de façon à ce qu’elle puisse être utilisée sans qu’il soit nécessaire de s’appuyer sur les résultats des études de dangers. Néanmoins, si ces résultats sont disponibles, il est alors possible d’alléger certaines étapes de la méthode. Elle s’est révélée facile à utiliser, cela a été constaté lors de son application dans le cadre de projets et stages d’étudiants. / Domino effects or cascading events in the chemical and process industries are recognized as credible accident scenarios since three decades. They are raising a growing concern, as they have the potential to cause catastrophic consequences. Domino effect, as phenomenon, is still a controversial topic when coming to its assessment. There is still a poor agreement on the definition of domino effect and its assessment procedures. A number of different definitions and approaches are proposed in technical standards and in the scientific literature. Therefore, one of this research objectives is to formalize domino effects knowledges in order to comprehend their occurrence mechanisms. Thus, the parameters that should be looked at so as to understand the escalation possibility and in order to identify domino scenarios, were analyzed. The aim is to improve domino effect hazards prevention, through the development of a methodology for the identification and the analysis of domino effects.We developed a method for the analysis of domino accident chain caused by loss of containments. It allow the identification and prioritization of accident propagation paths. The method is user-friendly and help decision making regarding the prevention of cascading events. The final outcomes of the model are given in form of quantitative rankings of equipment involved in domino scenarios, taking into account the effect of meteorological conditions and safety barriers. The rankings give a clear idea of equipment hazard for initiating or continuing cascading events.The methodology is based on a topography of the industrial area of concern, including the characteristics of each unit and accounting for protection and mitigation barriers. It is based on two main stages. The first is the identification of accident propagation paths. For this, the event tree method is used. The possible targets are identified combining the escalation thresholds and vulnerability models (to estimate damage probability). This first stage was implemented using the MATLAB® software and Visual Basic for Applications (VBA) to enable an easy input procedure and output analysis in Microsoft Excel®.The second stage is the identification of the most dangerous equipment. It consists in prioritizing equipment involved in the propagation paths according to their likelihood to cause/propagate domino effect. The algorithm that performs this phase was coded in VBA.The method was designed so as it can be used without the need to rely on the results of safety reports. However, if such results are available, it is possible to lighten some steps of the method. It revealed easy to apply, this was confirmed through projects and student internships. / Gli effetti domino, in cui un primo incidente causa in cascata altri scenari incidentali, sono tragli scenari incidentali più severi che avvengono nell’industria chimica. Nonostante l’attenzioneche anche la normativa dedica a tali scenari, la valutazione dell’effetto domino è un soggettocontroverso. L’analisi della letteratura tecnica e scientifica ha mostrato l’assenza di unadefinizione comune di « effetto domino » e di una semplice procedura per l’identificazione ditali scenari. È per tale motivo che uno degli obiettivi di questo lavoro di ricerca è diformalizzare le conoscenze relative agli effetti domino al fine di meglio comprendere imeccanismi che possono provocarli. A tal proposito sono stati studiati i parametri necessariper determinare la possibilità dell’insorgere di cascate di eventi e per essere in grado diidentificare i possibili scenari incidentali dovuti ad effetto domino. L’obiettivo finale del lavoroè stato di sviluppare un metodo per l’identificazione e l’analisi quantitativa della propagazionedi incidenti primari nell’ambito di scenari dovuti ad effetto domino.E’ stata sviluppata una metodologia generale per l’analisi degli effetti domino causati daperdite di confinamento. Tale metodologia permette l’identificazione e la classificazione deipercorsi di propagazione degli incidenti. Tale metodo facilita inoltre la prevenzione deglieffetti domino, proponendo uno strumento efficace e semplice da utilizzare.I risultati di questo studio sono forniti in forma di una classificazione delle apparecchiaturecoinvolte in scenari dovuti ad effetto domino, tenendo conto degli effetti delle condizionimeteorologiche e delle misure esistenti per la gestione del rischio. Tale classificazione fornisceanche un chiara idea dei pericoli rappresentati dalle singole apparecchiature nel caso diincidenti in cascata, in quanto precisando se la pericolosità delle attrezzature proviene dallaloro capacità di innescare o propagare un reazione a catena.Il metodo è basato su una descrizione topografica del sito studiato, che comprende anche lecaratteristiche di ogni attrezzatura, che tiene conto delle misure di gestione dei rischi e dellebarriere di sicurezza presenti, basato su due fasi principali. La prima è l’identificazione deipercorsi di propagazione degli incidenti. A tale scopo è stato utilizzato un metodo basatoVIsull’albero degli eventi. I potenziali bersagli vengono determinati combinando i valori di sogliaper la propagazione degli eventi ed i modelli di vulnerabilità delle apparecchiature. Questaprima fase è implementata in MATLAB® e Visual Basic for Applications (VBA) in modo dafacilitare la gestione dei dati e l’analisi dei risultati in Microsoft Excel®.La seconda fase è l’identificazione delle apparecchiature più pericolose per gli effetti domino.Tale fase consiste nel classificare le apparecchiature coinvolte nei percorsi di propagazione infunzione della loro capacità di causare o propagare un effetto domino. L’algoritmo dedicato inquesta fase è eseguito su VBA.I risultati ottenuti anche nell’applicazione ad un caso di studio hanno evidenziato le potenzialitàdel metodo, che rappresenta un significativo progresso nell’analisi quantitativa dell’effetto domino.
|
3 |
Environmental Management System Optimization Focusing on the Waste Environmental Media in the Chemical IndustryJones, Mesha 09 December 2016 (has links)
The first part of this project focused on evaluating aspects of the environmental management practices of Texas chemical industries, particularly waste generation and management of the data related to these processes. The waste generation data included Texas notifications required to track wastes. The next phase consisted of characterizing industrial waste disposal methods, waste container management, and transportation including an overview of required documentation for each activity. This led to identification of issues encountered from inefficient recordkeeping, ineffective internal communication, or inadequate environmental management systems. The result of an ineffective hazardous waste data management program can be fines, damage to the environment, and even adverse impacts on worker health and safety. For example, for the situations outlined in this document, violations could have resulted in penalties totaling $550,000 per day. This led to an effort to evaluate and develop solutions needed to develop a robust management system. The goal was to provide an operating and hazardous waste management program which optimally resulted in “zero findings” by the state regulatory agency. This would be achieved through personal experiences of this environmental engineer while working at a chemical plant augmented by information obtained through observations of others at the facility and a review of published documentation. This document focuses on the redesign and automation of an ineffective, manual environmental management system by making modifications and enhancements with a focus on effective management of various waste media. The criteria used for determining system optimization includes regulatory compliance and noncompliance penalties, internal communication time, onsite storage accumulation time exceedances, recordkeeping efficiency, number of lost waste containers, and time needed to make waste classifications. Optimization is verified against other alternatives by comparing instances and severity of noncompliance with state and federal regulations. The result was a total environmental management system optimized in a way that ensured compliance and achieved the goal of eliminating violations. It also reduced cost, allowed automated data entry, supported rapid asset location and helped track performance.
|
4 |
Biossorção de íons metálicos presentes nas águas de efluentes de indústrias químicas.FERREIRA, Joelma Morais. 28 September 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-09-28T19:41:20Z
No. of bitstreams: 1
JOELMA MORAIS FERREIRA – TESE (PPGEP) 2006.pdf: 9831105 bytes, checksum: 2ef86ebc8b2b5d26c22e23ceaa696d0d (MD5) / Made available in DSpace on 2018-09-28T19:41:20Z (GMT). No. of bitstreams: 1
JOELMA MORAIS FERREIRA – TESE (PPGEP) 2006.pdf: 9831105 bytes, checksum: 2ef86ebc8b2b5d26c22e23ceaa696d0d (MD5)
Previous issue date: 2006-12-22 / CNPq / As atividades industriais têm introduzido metais nas águas numa quantidade
muito maior do que aquela que seria natural, causando grandes poluições. Os
tratamentos convencionais (redução química, troca iônica, ultrafiltração e
osmose inversa), normalmente usados para a remoção de metais dos efluentes
líquidos, apresentam algumas desvantagens, pois além de serem, na maioria,
processos caros, não conseguem remover totalmente os íons metálicos. A
necessidade de tratamentos eficientes e econômicos para remoção de íons
metálicos de efluentes tem resultado no desenvolvimento de novas tecnologias.
Muitas destas descrevem técnicas envolvendo o uso de bactérias, fungos,
microalgas, e macroalgas. A biossorção é o processo no qual sólidos de origem
biológica ou seus derivados são usados na retenção de íons metálicos de um
ambiente aquoso. Comparadas às metodologias convencionais para a remoção
de íons metálicos de efluentes industriais, o processo de biossorção tem como
principais vantagens o baixo custo operacional e alta seletividade. Dentre os
microrganismos mais utilizados destacam-se os fungos, que são utilizados em
uma variedade de processos industriais servindo como fonte constante e
econômica de suprimento de biomassa para remoção de íons metálicos. Sendo
o Brasil, o maior produtor mundial de álcool etílico via processo fermentativo
utilizando-se da Saccharomyces cerevisiae (levedura) como o microrganismo
agente da fermentação, é prática comum nas indústrias de produção de álcool
etílico, no Brasil, a sangria do creme de levedura, que consiste em retirar parte
do creme do processo de centrifugação. Desta forma, a Saccharomyces
cerevisiae é uma fonte excedente do processo de fermentação que pode ser
utilizada, por exemplo, como bioadsorvente de íons metálicos em processos de
descontaminação ambiental. Experimentos de biossorção de íons metálicos
utilizando a Saccharomyces cerevisiae para remoção do Cd2+ e Pb2+ foram
realizados para investigar os fatores que influenciam e otimizam o processo de
biossorção. Através do estudo da cinética estático verificou-se que o tempo 48h
já é suficiente para o processo alcançar o equilíbrio. Para a cinética dinâmica a
partir de 90 min não ocorreu mais alteração no valor da concentração final dos
dois íons metálicos, portanto, sendo este tempo suficiente para o sistema
alcançar o equilíbrio num sistema operando em condições dinâmicas. A técnica
de planejamento experimental foi utilizada para avaliar os efeitos das variáveis
quantidade de biomassa, concentração dos íons metálicos, temperatura, pH e
estado da biomassa (viva ou morta), que influenciam no processo Os efeitos da
quantidade de biomassa e concentração inicial dos íons metálicos estudados
foram as variáveis que apresentaram mais efeitos significativos quando
comparado com o efeito do pH, estado da biomassa (viva ou morta) e
temperatura nas condições avaliadas. O modelo que melhor ajustou o processo
foi o de Langmuir com valores de qmax de 210,5 mg.g-1 para o cádmio e 1486,88
mg.g-1 para o chumbo. A levedura imobilizada apresentou uma certa queda na
sua eficiência de remoção observando-se redução média na eficiência de q de
78,5% para o Cd2+ e de 73,92% para o Pb2+. / The industrial activities have introduced metals in waters in quantities which are
greater than those found naturally, thereby causing heavy pollutions. The
conventional treatments (chemical reduction, ionic exchange, ultrafiltration and
inverse osmosis), normally used for the metal removal of the liquid effluents,
present some disadvantages, because majority of them apart from being
expensive processes are not capable to remove metal ions compleatly. The
necessity of efficient and economic treatments for removal of metallic ions from
effluents has resulted in the development of new technologies. Many of these
techniques are based on the use of bacteria, fungi, microseaweed, and
macroseaweed. The biosorption is a process in which solids of natural origin or
its derivatives are used in the retention of metallic ions from an aqueous
medium. The biosorption process has as main advantages the low operational
cost and high selectivity when compared to the conventional methods for the
removal of metallic ions from industrial effluents. Amongst the used
microorganisms fungi are more distinguished, as these are used in a variety of
industrial processes and serves as constant and economic source of
supplement of biomass for removal of metallic ions. Brazil being a world-wide
big producer of ethyl alcohol by a fermentative process that uses the
Saccharomyces cerevisiae (ferment) as the microorganism, it is a common
practice in the industries of alcohol to remove the excess of the ferment cream
by centrifuging. This way, the excessive Saccharomyces cerevisiae of the
fermentation process is a source that can be used, for example, as biosorbent
of metallic íons for the decontamination of environment. Experiments of
biosorption of metallic íons using the Saccharomyces cerevisiae for removal of
the Cd2+ and Pb2+ had been carried out to investigate the factors that
influence and optimize the biosorption process. Through the study of the static
kinetics it was verified that a period of 48 hours is enough for the process to
reach the equilibrium. For the dynamic kinetics after 90 min no more change in
the final concentration of the two metallic ions occurred. Therefore, this time is
enough for the system to reach the equilibrium when the process is operating in
dynamic conditions. The design of experiment technique was used to evaluate
the effect of the variables: biomass amount, metallic ions concentrations,
temperature, pH and state of the biomass (alive or dead). The effects of the
amount of biomass amount and initial metallic ion concentration were the
variables that presented more significant effects when compared with the effect
of pH and state of the biomass (alive or dead) under the evaluated conditions.
The Langmuir and Freundlich models were used to adjust to the experimental
data of the adsorption isotherms of metal ions studied. The model that adjusted
better the adsorption isotherms was of Langmuir having qmax values as 210.5
mg.g-1 for cadmium and 1486.88 mg.g-1 (Langmuir not linearized) for the lead.
The immobilized ferment presented a decrease in its efficiency of metal ion
removal. In the study for the immobilized ferment an average efficiency of the
adsorbed amount per unit of mass of 78.5% for the Cd2+ and 73.92% for the
Pb2+ was observed.
|
Page generated in 0.0822 seconds