• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 9
  • 6
  • 1
  • Tagged with
  • 34
  • 34
  • 24
  • 14
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physicochemical Characterization of the Bacterial Cu(I) Sensor CsoR

Ma, Zhen 2009 December 1900 (has links)
M. tuberculosis copper-sensitive operon repressor (Mtb CsoR) is the founding member of a new metalloregulatory protein family in prokaryotes that regulates the transcription of the cso operon in response to copper toxicity. Mtb CsoR tetramer binds 1 monomer mol equiv of Cu(I) with very high affinity (log KCu=18.0) via three conserved residues, Cys36, His61' and Cys65'. Binding of Cu(I) allosterically inhibits the CsoR binding to the DNA operator (CsoO) overlapping the cso promoter (DeltaGc=+3.6 kcal/mol, pH 7.0, 25 oC). These findings are consistent with a role of CsoR as a transcriptional repressor with Cu(I) binding inducing transcriptional derepression. To explore the mechanism of this regulation, His61 was substituted with 1-methylhistidine (MeH) or Beta- (2-thiazolyl)-alanine (Thz) using a native chemical ligation strategy. The CsoO binding affinities of the resultant H61MeH and H61Thz CsoRs are both refractory to inhibition by Cu(I) binding despite the fact that each forms a high affinity 3-coordinate complex with Cu(I). This suggests that while Cu(I) is coordinated by the N?11 atom of His61, the N?22 atom plays an critical role in driving this allosteric switch. Evidence in support of a formation of a hydrogen bonding network involving the N?1 face of His61 and two conserved "second coordination shell" residues, Glu81' and Tyr35, is presented. Remarkably, this mechanism is analogous to that proposed for the Zn(II) sensor CzrA from S. aureus. To test this, we employed the same native chemical ligation approach to substitute the key Zn(II) ligand His97 with 1-methylhistidine; with the preliminary findings fully consistent with an intersubunit allosteric switch involving the N?2 face of this key His97 residue in CzrA. Two predicted homologs of Mtb CsoR were also biochemically characterized to obtain additional support for the hypothesis that CsoR is a key Cu(I) regulatory protein in many bacterial species. B. subtilis CsoR, known to regulate the transcription of the copZA operon, was found to have biochemical properties similar to those of Mtb CsoR as to Cu(I) binding, DNA binding and Cu(I)-dependent allosteric regulation. Interestingly, Bsu CsoR also binds other divalent metal ions (Zn, Ni) with high affinity but with metal coordination geometries distinct from that of Cu(I). Binding of these divalent metal ions only weakly regulates copZA operator binding in vitro, suggesting that coordination number and geometry are most closely related to the allosteric regulation. Finally, a putative CsoR from the pathogenic S. aureus Newman strain was identified and characterized, and was found to exhibit biochemical properties similar to those of Mtb and Bsu CsoRs. Parallels between Cu(I)-sensing CsoRs and functional orthologs in the CsoR/RcnR family are further discussed in the context of the mechanism and evolutionary divergence of this new family of regulatory proteins.
2

Enhancing the stability of DNA origami nanostructures by enzymatic and chemical ligation methods / 酵素および化学ライゲーション反応によるDNAオリガミナノ構造体の安定化に関する研究

KRISHNA MURTHY, KIRAN KUMAR 24 July 2023 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第24854号 / エネ博第463号 / 新制||エネ||87(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 森井, 孝, 教授 片平, 正人, 教授 佐川, 尚 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DGAM
3

Cyclotides evolve : Studies on their natural distribution, structural diversity, and activity

Park, Sungkyu January 2016 (has links)
The cyclotides are a family of naturally occurring peptides characterized by cyclic cystine knot (CCK) structural motif, which comprises a cyclic head-to-tail backbone featuring six conserved cysteine residues that form three disulfide bonds. This unique structural motif makes cyclotides exceptionally resistant to chemical, thermal and enzymatic degradation. They also exhibit a wide range of biological activities including insecticidal, cytotoxic, anti-HIV and antimicrobial effects. The cyclotides found in plants exhibit considerable sequence and structural diversity, which can be linked to their evolutionary history and that of their host plants. To clarify the evolutionary link between sequence diversity and the distribution of individual cyclotides across the genus Viola, selected known cyclotides were classified using signature sequences within their precursor proteins. By mapping the classified sequences onto the phylogenetic system of Viola, we traced the flow of cyclotide genes over evolutionary history and were able to estimate the prevalence of cyclotides in this genus. In addition, the structural diversity of the cyclotides was related to specific features of the sequences of their precursor proteins, their evolutionary selection and expression levels. A number of studies have suggested that the biological activities of the cyclotides are due to their ability to interact with and disrupt biological membranes. To better explain this behavior, quantitative structure-activity relationship (QSAR) models were developed to link the cyclotides’ biological activities to the membrane-interactive physicochemical properties of their molecular surfaces. Both scalar quantities (such as molecular surface areas) and moments (such as the distributions of specific properties over the molecular surface) were systematically taken into account in the development of these models. This approach allows the physicochemical properties of cyclotides to be geometrically interpreted, facilitating the development of guidelines for drug design using cyclotide scaffolds. Finally, an optimized microwave-assisted Fmoc-SPSS procedure for the total synthesis of cyclotides was developed. Microwave irradiation is used to accelerate and improve all the key steps in cyclotide synthesis, including the assembly of the peptide backbone by Fmoc-SPPS, the cleavage of the protected peptide, and the introduction of a thioester at the C-terminal carboxylic acid to obtain the head-to-tail cyclized cyclotide backbone by native chemical ligation.
4

Applying native chemical ligation to the development of magnetically-responsive drug delivery platforms for biomedical applications

Camarillo López, Raúl Horacio January 2017 (has links)
The potential of magnetic nanoparticle-vesicle assemblies (MNP-V) as remote controlled drug delivery platforms capable of inducing cellular responses under magnetic stimuli has been previously demonstrated in the Webb group at the University of Manchester. To create these magnetoresponsive nanomaterials biotin-avidin and Cu-histidinyl multivalent recognition were employed. This thesis describes an exploration of the potential of thiol-thioester exchange reactions (leading to native chemical ligation, NCL) to create magnetoresponsive materials, which potentially have applications in biomedicine. Firstly, iron oxide magnetic nanoparticles have been synthesised using a thermal co-precipitation method followed by chemical modification with sulfhydryl motifs for use as smart biomaterials. Knowing that the behaviour and reactivity of nanoparticles is highly influenced by their physicochemical properties, a thourough characterisation of these particles has been obtained. Secondly, during this project, several thioester derivatives have been synthesised that can be incorporated into the membranes of 800 nm liposomes. Among these, the spectrophotometric properties of synthetic lipid 38 allowed the investigation of trans-thioesterification rates with cysteinyl functionalities, both in solution and at the phospholipid membrane interface of liposomes. Product identification has been achieved using mass spectrometry and 1H-NMR spectroscopy. Finally, the conditions required to induce the release of a dye (e.g. 5(6)-CF) from MNP-V upon exposure to an AMF pulse have been established. Aurintricarboxylic acid (ATA), a general inhibitor of nucleases has been investigated as interesting payload due to its fluorescent and anti-viral properties.
5

Development and application of peptide- and glycoarrays

Weissenborn, Martin January 2012 (has links)
Microarrays enable high throughput analysis with minute amounts of analyte. They are widely used in the ’omics’ fields both as diagnostic and analytical tools. Their ability to dramatically impact an entire field of research has focused our attention on the development of novel methods for the formation, analysis and applications of microarrays to study carbohydrate-protein interactions and the analysis of glycosylation patterns of biomolecules. Availability of appropriately modified ligands is often a limiting factor in the preparation of microarrays. To address this issue robust routes for the synthesis of nine amino ethylglycosides were developed that can be employed for microarray formation. The syntheses of more complex ligands typically deliver small quantities of material despite the requirements for special skills, equipment and long preparation times. Considering the number of complex oligosaccharides that are necessary for systematic microarray studies, the problem of availability of these complex structures is difficult to address solely with synthetic ligands. A modified native chemical ligation (NCL) strategy, in which a surface bound oxo-ester is used instead of a thioester, was optimised and used for efficient chemoselective immobilisation of sugars and peptides carrying N-terminal cysteines. The reaction proceeds under physiological conditions and has the potential to become a valuable tool for immobilisation of N-terminal cysteine-containing molecules from biological samples. The new NCL coupling methodology was developed on gold surfaces and analysed by MALDI-ToF MS. The majority of array systems, however, rely on secondary protein interactions on glass or polystyrene surfaces. A direct, more accurate analytical tool could ease the analysis and significantly improve the quality of data read-out from glass microarrays. MALDI-ToF MS that is applicable to gold microarrays cannot be used on surfaces that do not provide the necessary electrical conductivity. The undertaken experiments indicated that application of conductive tape to the back of glass or polystyrene slides made MALDI-ToF analysis on poorly conducting surfaces possible. Furthermore, the triphenylmethyl (trityl) groups attached to the surface-molecules were shown to act as ’internal-matrix’ and enable the direct MALDI analysis. Once the new array formation and analysis techniques were developed, we turned our attention towards the application of microarrays to analyse carbohydrate-protein interactions. The tools for analysis of glycosylation of biomolecules are laborious and can only be used in specialised labs. As glycosylated biomolecules gain prominence in research, clinical and industrial settings, high throughput analysis of glycosylation patterns is becoming a requirement for quality control. A technique for screening of glycosylation patterns in glycopeptides on microarrays was developed based on biophotonic scattering. This technique enables the detection of glycosylation patterns by screening immobilised glycoproteins with a range of lectins. To study the interactions between enzymes and carbohydrates, a chemoenzymatic synthesis of a mannopeptide, which consisted of four carbohydrate units, was shown in solution and on chip. Three different glycosyl transferases were successfully employed. New methods for microarray formation and analysis were developed and applied to carbohydrate-protein interaction studies. This yielded a new technique to determine protein glycosylation patterns and to produce complex glycans by enzymatic synthesis.
6

Altering Histone Dynamics <i>in vitro</i> and <i>in vivo</i>

Howard, Cecil J., II January 2018 (has links)
No description available.
7

Engineering Modular Self-Assembling Biomaterials for Multifunctionality

Jung, Jangwook Philip January 2010 (has links)
No description available.
8

Synthetic Tools for the Preparation of Modified Histones

Shimko, John C. 19 December 2011 (has links)
No description available.
9

Basenlabile Auxiliare für die Erweiterung der Native Chemische Ligation in Lösung und an der Festphase

Harpaz, Ziv 27 April 2016 (has links)
Native chemische Ligation ist heutzutage die Methode der Wahl für die chemische Synthese von Proteinen. Die Voraussetzung der Methode: ein Cystein Rest am N-Terminus, gilt als größter Nachteil der Methode. N-alpha-Auxiliare werden seit mehreren Jahren als Cystein-Surrogat verwendet, um diese Einschränkungen zu überwinden. Aufgrund zahlreicher Einschränkungen haben sich die Auxiliare als Standard Methode nicht durchgesetzt. Im ersten Teil der Arbeit wurde eine neue Klase N-alpah-Auxiliare entwickelt. Die Auxiliare sind einfach zu synthesieren, können direkt auf den Festphasen in das Peptid eingeführt und unter milden basischen Bedingungen wieder abgespalten werden. Modelversuche wurden durchgeführt um ihr Eigenschaften hinsichtlich der native chemische Ligation und Abspaltung zu evaluieren. Daraufhin wurden die Auxiliare für die Synthese der antimikrobiellen Domäne des Dermicidin Proteins verwendet. Die chemische Ligation an der festen Phase hat in den letzten Jahren erheblich an Popularität gewonnen. Die Methode profitiert von der einfachen Reinigungseigenschaften der Festphasensynthese und erlaubt die sequenzielle Verknüpfung von mehreren Peptidfragmenten zu den gewünschten Zielproteinen mit hohen Reinheiten. Im zweiten Teil der Dissertation wurde das Konzept der chemische Festphasen Ligation mit der Hilfe eines „Second Generation“ Auxiliar über die Cysteinchemie hinaus erweitert. Durch Auxiliar-unterstüzte Festphase Ligation“ wurde die variable tandem repeats Domäne des MUC1 Proteins hergestellt. / Native chemical ligation continues to lead as the method of choice for the total chemical synthesis of proteins. Despite the methods broad use the method requirement for a terminal cysteine residue remains its biggest disadvantage. N-alpah-auxiliaries have long been used to overcome this inherent hindrance by acting as cysteine mimics. The method however has still not achieved broad use due to several key issues. In the first part of the thesis a new class of N-alpha-auxiliaries is presented. The auxiliaries are straightforwardly synthesized, readily introduced onto the peptide building blocks and cleaved under mild basic conditions. Model tests were carried out to evaluate the auxiliaries’ characteristics and their removal chemistry was developed. Finally, the auxiliary was utilized for the synthesis of the antimicrobial C-terminal domain of Dermicidine. Solid phase chemical ligation has grown in popularity in the recent years. Benefitting from the solid-phase inherent purification characteristic it allows for multiple peptide fragments to be ligated in a sequential fashion to yield the full length protein target in high purity. In the second part of the dissertation the concept of solid phase chemical ligation is expanded beyond the cysteine junction using a “second generation” auxiliary. MUC1 protein variable tandem repeats domain was synthesized using auxiliary-assisted solid phase chemical ligation.
10

Synthesis and characterisation of peptide-based probes for quantitative multicolour STORM imaging

Taylor, Edward John Robert January 2018 (has links)
Current single molecule localisation microscopy methods allow for multicolour imaging of macromolecules in cells, and for a degree quantification on molecule numbers in one colour. However, that has not yet been an attempt to develop tools capable of quantitative imaging with multiple colours in cells. This work addressed this challenge by designing linker peptides with chemospecific groups to allow attachment of activator and emitter dyes for STORM imaging, and a targeting module. The design ensured a stoichiometric ratio of targeting module to activator and emitter dyes. Peptides with HaloTag ligands attached were labelled with various activator and emitter pairs and used to label HaloTag fusions of S. pombe and mouse embryonic stem cells. These peptides were found to bind non-specifically to various areas of both cell types, and did not localise to HaloTag protein, whereas controls did. Another peptide was also labelled with activator-emitter pairs and attached to expressed anti-GFP and ant-mCherry nanobodies via native chemical ligation. The labelled anti-GFP nanobody was to demonstrate ensemble and single molecule imaging in S. pombe, as well as characterisation on single molecule surfaces in comparison to a conventional randomly labelled antibody. The stoichiometrically labelled nanobody had a more consistent number of photons detected per localisation, number of localisation per molecule and number of blinks per molecule, which implied that it could be more useful than randomly labelled nanobodies for counting experiments. It was also shown to be capable of specific laser activation for STORM imaging with both an Alexa405Cy5 and Cy3Cy5 pairs. These anti-GFP and anti-mCherry nanobodies and peptide linker are new tools for both counting and multicolour imaging in super-resolution, which could be widely applied to constructs that are already tagged with GFP or mCherry.

Page generated in 0.116 seconds