Spelling suggestions: "subject:"bohemical vapor deposition."" "subject:"boichemical vapor deposition.""
371 |
The Effects Of Carbon Content On The Properties Of Plasma Deposited Amorphous Silicon Carbide Thin FilmsSel, Kivanc 01 March 2007 (has links) (PDF)
The structure and the energy band gap of hydrogenated amorphous silicon carbide are theoretically revised. In the light of defect pool model, density of states distribution is investigated for various regions of mobility gap. The films are deposited by plasma enhanced chemical vapor deposition system with various gas concentrations at two different, lower (30 mW/cm2) and higher (90 mW/cm2), radio frequency power densities. The elemental composition of hydrogenated amorphous silicon carbide films and relative composition of existing bond types are analyzed by x-ray photoelectron spectroscopy measurements. The thicknesses, deposition rates, refractive indices and optical band gaps of the films are determined by ultraviolet visible transmittance measurements. Uniformity of the deposited films is analyzed along the radial direction of the bottom electrode of the plasma enhanced chemical vapor deposition reactor. The molecular vibration characteristics of the films are reviewed and analyzed by Fourier transform infrared spectroscopy measurements. Electrical characteristics of the films are analyzed by dc conductivity measurements. Conduction mechanisms, such as extended state, nearest neighbor and variable range hopping in tail states are revised. The hopping conductivities are analyzed by considering the density of states distribution in various regions of mobility gap. The experimentally measured activation energies for the films of high carbon content are too low to be interpreted as the difference between Fermi level and relevant band edge. This anomaly has been successfully removed by introducing hopping conduction across localized tail states of the relevant band. In other words, the second contribution lowers the mobility edge towards the Fermi level.
|
372 |
Production Of Boron NitrideOzkol, Engin 01 July 2008 (has links) (PDF)
Boron nitride is found mainly in two crystal structures / in hexagonal structure (h-BN) which is very much like graphite and in cubic structure (c-BN) with properties very close to those of diamond. h-BN is a natural lubricant due to its layered structure. It is generally used in sliding parts of the moving elements such as rotating element beds in turbine shafts. Since c-BN is the hardest known material after diamond it is used in making hard metal covers. In addition to its possible microelectronics applications (can be used to make p-n junction), its resistance to high temperatures and its high forbidden energy gap are its superiorities over diamond.
Recent studies have shown that c-BN can be produced by Physical Vapor Deposition (PVD) and Chemical Vapor Deposition (CVD) in plasma. But these studies have failed to determine how all of the production parameters (boron and nitrogen sources, composition of the gas used, substrate, RF power, bias voltage, substrate temperature) affect the c-BN content, mechanical stress and the deposition rate of the product with a systematic approach.
The systematic study was realized in the range of available experimental ability of the present PVD and CVD equipment and accessories. The BN films were produced in the plasma equipment for CVD using RF and MW and magnetron sputtering and were studied with the measurement and testing facilities. It is believed that with this approach it will be possible to collect enough experimental data to optimize production conditions of BN with desired mechanical and optoelectronic properties.
h-BN films were successfully deposited in both systems. It was possible to deposit c-BN films with the MW power, however they were weak in cubic content. Deposition at low pressures eliminated the hydrogen contamination of the films. High substrate temperatures led to more chemically and mechanically stable films.
|
373 |
Production Of Hydrogenated Nanocrystalline Silicon Based Thinfilm TransistorAliyeva, Tamila 01 July 2010 (has links) (PDF)
The instability under bias voltage stress and low mobility of hydrogenated amorphous
silicon (a-Si:H) thin film transistor (TFT), produced by plasma enhanced chemical vapor deposition
(PECVD) technique, are the main problems impeding the implementation of active
matrix arrays for light emitting diode display panels and their peripheral circuitry. Replacing
a-Si:H by hydrogenated nanocrystalline silicon film (nc-Si:H) seems a solution due to its
higher mobility and better stability. Therefore nc-Si:H TFT was produced and investigated in
this thesis.
All TFT layers (doped nc-Si:H, intrinsic nc-Si:H and insulator films) were produced separately,
characterized by optical (UV-visible and FTIR spectroscopies, XRD) and electrical
(current-voltage, I-V) methods, and optimized for TFT application. Afterwards the non
self-aligned bottom-gate TFT structure was fabricated by the photolithographic method using
2-mask set.
The n+ nc-Si:H films, used for TFT drain/source ohmic contacts, were produced at high
H2 dilution and at several RF power densities (PRF). The change of their lateral resistivity
(rho) was measured by reducing the film thickness via reactive ion etching. The rho values rise
below a critical film thickness, indicating the presence of the disordered and less conductive
incubation layer. The optimum PRF for the lowest incubation layer was determined.
Among the deposition parameters only increased NH3/SiH4 flow rate ratio improved the
insulating properties of the amorphous silicon nitride (a-SiNx:H) films, chosen as the TFT
gate dielectric. The electrical characteristics of two TFTs with a-SiNx:H having low leakage
current, fabricated at different NH3/SiH4 ratios (~19 and ~28) were compared and discussed.
The properties (such as crystallinity, large area uniformity, etc.) of the nc-Si:H film as
TFT channel layer, were found to depend on PRF. For the films deposited at the center of
the PECVD electrode the change from an amorphous dominant structure to a nanocrystalline
phase took place with increasing PRF, whereas those at the edge had always nanocrystalline
nature, independent of PRF. The two different TFTs produced at the center of the electrode
with a-Si:H and nc-Si:H grown at low and high PRF, respectively, were compared through
their I-V characteristics and electrical stability under the gate bias voltage stress.
Finally, nc-Si:H TFT structure, produced and optimized in this work, was analyzed through
gate-insulator-drain/source capacitor by capacitance-voltage (C-V) measurements within
106-10-2 Hz frequency (F) range. The inversion regime was detected at low F without any
external charge injection. Besides, ac hopping conductivity in the nc-Si:H bulk was extracted
from the fitting results of the C-F curves.
|
374 |
Abscheidung von (Kohlenstoff)Nanostrukturen mittels PE-HF-CVDPacal, Frantisek 04 December 2006 (has links) (PDF)
Kohlenstoffnanoröhren besitzen eine Reihe von einzigartigen strukturellen, mechanischen und elektronischen Eigenschaften. Sie können in Abhängigkeit von der Chiralität metallisches oder halbleitendes Verhalten zeigen, hohe mechanische, thermische und chemische Stabilität aufweisen, können chemisch funktionalisiert werden und sind hervorragende Elektronenemitter. Vor dem Hintergrund dieser vielversprechenden Eigenschaften wurde schnell die Frage von möglichen technischen Anwendungen von Kohlenstoffnanoröhren gestellt. Vor einer umfassenden kommerziellen Umsetzung sind allerdings noch grundlegende Untersuchungen, sowohl zu den Eigenschaften als auch zu einer gezielten Herstellung und Manipulation, erforderlich. Der Mechanismus des gerichteten Wachstums der Kohlenstoffnanoröhren ist äußerst komplex, weshalb er bis heute nicht völlig aufgeklärt werden konnte. Der Grund liegt in der Vielfalt der möglichen Reaktionen zwischen den Molekülen in der Gasphase, der Wechselwirkung zwischen Gasphase und verwendeten Unterlagen und den Reaktionsmechanismen auf diesen Substratoberflächen. Bislang fehlt es an einem einheitlichen Verständnis des Entstehungsprozesses von Kohlenstoffnanoröhren bzw. –nanostrukturen. Der Schwerpunkt dieser Arbeit liegt in der Abscheidung von Kohlenstoffnanostrukturen mittels plasmaaktivierter und hitzdrahtgestützter chemischen Gasphasenabscheidung -„Plasma enhanced hot filament chemical vapor deposition“ (PE-HF-CVD). Es sollen Abscheidungsbedingungen für die Synthese von unterschiedlichen Kohlenstoffnanostrukturen gefunden und optimiert werden. Die Darstellung und Charakterisierung von „phasenreinen“, mehrwandigen, tubularen Röhren auf unterschiedlichen metallbeschichteten Substraten steht im Vordergrund der Arbeit. Das Interesse besteht in einer Abscheidung bei niedrigen Substrattemperaturen, damit temperaturempfindliche Werkstoffe wie z.B. Glas, als Substratmaterialien eingesetzt werden können. Mittels der PE-HF-CVD Methode, die als vielversprechende Technologie zur Darstellung gerichteter Kohlenstoffnanoröhren gilt, sollen Erkenntnisse zum Einfluss einzelner Abscheidungsparameter auf den Wachstumsprozess von Nanoröhren gewonnen werden, wozu auch die plasmadiagnostische Langmuirsondentechnik und die optische Emissionsspektroskopie (OES) eingesetzt werden. Dadurch soll der Zusammenhang zwischen inneren Plasmaparametern und Wachstumsprozessen der Kohlenstoffnanoröhren oder –fasern definiert werden, um eine Prozesskontrolle während der Abscheidungsphase zu ermöglichen.
|
375 |
New Precursors for CVD Copper MetallizationNorman, John A. T., Perez, Melanie, Schulz, Stefan E., Waechtler, Thomas 02 October 2008 (has links) (PDF)
A novel CVD copper process is described using
two new copper CVD precursors, KI3 and KI5, for
the fabrication of IC or TSV (Through Silicon Via)
copper interconnects. The highly conformal CVD
copper can provide seed layers for subsequent
copper electroplating or can be used to directly
fabricate the interconnect in one step. These
new precursors are thermally stable yet chemically
reactive under CVD conditions, growing copper
films of exceptionally high purity at high growth
rates. Their thermal stability can allow for
elevated evaporation temperatures to generate
the high precursor vapor pressures needed for
deep penetration into high aspect ratio TSV vias.
Using formic acid vapor as a reducing gas with
KI5, copper films of > 99.99 atomic % purity
were grown at 250°C on titanium nitride at a
growth rate of > 1500 Å/min. Using
tantalum
nitride coated TSV type wafers, ~ 1700 Å of
highly conformal copper was grown at 225°C into
32 μm × 5 μm trenches with good adhesion. With
ruthenium barriers we were able to grow copper
at 125°C at a rate of 20 Å/min to give a
continuous ~ 300 Å copper film. In this respect,
rapid low temperature CVD copper growth offers
an alternative to the long cycle times associated
with copper ALD which can contribute to copper
agglomeration occurring.
© 2008 Elsevier B.V.
|
376 |
Technology development and study of rapid thermal CVD high-K gate dielectrics and CVD metal gate electrode for future ULSI MOSFET device integration zirconium oxide, and hafnium oxide /Lee, Choong-ho. January 2003 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Vita. Includes bibliographical references. Available also from UMI Company.
|
377 |
Stress-Strain Management of Heteroepitaxial Polycrystalline Silicon Carbide FilmsLocke, Christopher William 01 January 2011 (has links)
Silicon carbide (SiC) is one of the hardest known materials and is also, by good fortune, a wide bandgap semiconductor. While the application of SiC for high-temperature and high-power electronics is fairly well known, its utility as a highly robust, chemically-inert material for microelectrical mechanical systems (MEMS) is only beginning to be well recognized. SiC can be grown on both native SiC substrates or on Si using heteroepitaxial growth methods which affords the possibility to use Si micromachining methods to fabricate advanced SiC MEMS devices.
The control of film stress in heteroepitaxial silicon carbide films grown on polysilicon-on-oxide substrates has been investigated. It is known that the size and structure of grains within polycrystalline films play an important role in determining the magnitude and type of stress present in a film, i.e. tensile or compressive. Silicon carbide grown on LPCVD polysilicon seed-films exhibited a highly-textured grain structure and displayed either a positive or negative stress gradient depending on the initial thickness of the polysilicon seed-layer. In addition a high-quality (111) oriented 3C-SiC on (111)Si heteroepitaxial process has been developed and is reported. SiC MEMS structures, both polycrystalline (i.e., poly-3C-SiC) and monocrystalline (i.e., 3C-SiC) were realized using micromachining methods. These structures were used to extract the stress properties of the films, with a particular focus on separating the gradient and uniform stress components.
|
378 |
Design and Implementation of a 200mm 3C-SiC CVD ReactorFrewin, Christopher L 01 June 2006 (has links)
Silicon carbide, SiC, is a semiconductor material which has many diverse uses in many of today's leading technologies. The wide band-gap aspect of the material has been utilized to create power and high frequency electronics, its physical hardness enables its use for MEMS devices, and the biological compatibility make perfect for utilization in medical applications. SiC is not a chemical compound normally found in nature and must be artificially generated. One of the methods used for the creation of single crystal, high quality SiC material is provided through the use of a chemical vapor deposition reactor. The University of South Florida currently has a horizontal hot-wallLPCVD reactor used by Dr. S. E.
Saddow and his group to grow epitaxial SiC material for research grants by ONR and ARL.These agencies have commissioned the construction of a second LPCVD reactor for the primary purpose of growing 3C-SiC, a specific SiC crystal polytype, and this work describes the fabrication of the new reactor, MF2. This reactor was designed using the first reactor, MF1, as a template, but the design was modified to better facilitate single crystalline growth. The environment of the reactor is a very important consideration for crystal growth, and slight variations can cause critical defect incorporation into the crystal lattice. Many conditioning runs were required to facilitate the epitaxial growth of the different polytypes of SiC, and constant switching of the primary hot-zone required for the growth of hexagonal 4H-SiC and 6H-SiC to the hot zone required for 3C-SiC consumed precious resources and time.
The new reactor uses a single primary control to monitor the three most important environmental concerns; hot-zone temperature, gaseous flow, and chamber pressure. The new reactor has been designed to use 100 mm Si substrates instead of the 50mm Si substrate size currently in use by MF1. The construction, testing, and 3C-SiC epitaxial growth on Si substrate capability of a 200 mm 3C-SiC hot-wall LPCVD reactor are demonstrated through this work.
|
379 |
I-V transport measurements of a single unsupported MWCNT under various bending deformationsKim, Suenne 25 January 2011 (has links)
The first part of this dissertation is an introduction describing a brief historical background of carbon nanotubes (CNTs) and their pseudo 1D structure responsible for many exotic electronic properties. The second part describes our experimental setup. The third part is about the growing of Multi-Walled Carbon Nanotubes (MWCNTs) by the chemical vapor deposition (CVD) method. Then the fourth part demonstrates a simple but reliable method to make firm contact junctions between MWCNTs and metals such as tungsten (W). The novel point of our method consists, after making a mechanical preliminary contact at a selected MWCNT, in applying a series of voltage pulses across the contact. Thin oxide layers that may form between the MWCNT and the W wire, are removed in steps by the resistive heating and electron impact during the application of each voltage pulse. Furthermore, this simple process of contact welding in steps does not bring about any permanent change in the electronic transport properties of the MWCNTs. The fifth part discusses our bending experiments. We apply a uniform and continuous bending to a selected MWCNT at room and liquid nitrogen temperatures to study the strain effect on the electrical transport in the MWCNT. There are a few published experimental works related to the bending deformation; however, this is the first study of electronic transport properties in continuous bending and releasing deformations. We observed a saturation behavior with the MWCNT and also found the bending deformation causing an anomalous change in the saturation behavior. In the sixth part we depict some interesting phenomena due to the stretching deformation of MWCNT, where we were able to propose a simple model for electron localization induced by the deformation. The last part deals with the formation of the "X-junction" between two MWCNTs. A strong X-junction can be formed simply by means of the e-beam inside the Scanning Electron Microscope (SEM). The X-junctions may form the basic elements of nano-electronic circuits such as various metal-insulator junctions, quantum dots, and similar devices. / text
|
380 |
Mitigation of the radioxenon memory effect in beta-gamma detector systems by deposition of thin film diffusion barriers on plastic scintillatorFay, Alexander Gary 16 February 2011 (has links)
The significance of the radioxenon memory effect in the context of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty is introduced as motivation for the project. Existing work regarding xenon memory effect reduction and thin film diffusion barriers is surveyed. Experimental techniques for radioxenon production and exposure, as well as for thin film deposition on plastic by plasma enhanced chemical vapor deposition (PECVD), are detailed. A deposition rate of 76.5 nm min⁻¹ of SiO₂ is measured for specific PECVD parameters. Relative activity calculations show agreement within 5% between identically exposed samples counted on parallel detectors. Memory effect reductions of up to 59±1.8% for 900 nm SiO₂ films produced by plasma enhanced chemical vapor deposition and of up to 77±3.7% for 50 nm Al₂O₃ films produced by atomic layer deposition are shown. Future work is suggested for production of more effective diffusion barriers and expansion to testing in operational monitoring stations. / text
|
Page generated in 0.1156 seconds