• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algorithme de Chemin de Régularisation pour l'apprentissage Statistique

Karina, Zapien 09 July 2009 (has links) (PDF)
La sélection d'un modèle approprié est l'une des tâches essentielles de l'apprentissage statistique. En général, pour une tâche d'apprentissage donnée, on considère plusieurs classes de modèles ordonnées selon un certain ordre de "complexité". Dans ce cadre, le processus de sélection de modèle revient à trouver la "complexité" optimale, permettant d'estimer un modèle assurant une bonne généralisation. Ce problème de sélection de modèle se résume à l'estimation d'un ou plusieurs hyperparamètres définissant la complexité du modèle, par opposition aux paramètres qui permettent de spécifier le modèle dans la classe de complexité choisie.<br>L'approche habituelle pour déterminer ces hyperparamètres consiste à utiliser une "grille". On se donne un ensemble de valeurs possibles et on estime, pour chacune de ces valeurs, l'erreur de généralisation du meilleur modèle. On s'intéresse, dans cette thèse, à une approche alternative consistant à calculer l'ensemble des solutions possibles pour toutes les valeurs des hyperparamètres. C'est ce qu'on appelle le chemin de régularisation. Il se trouve que pour les problèmes d'apprentissage qui nous intéressent, des programmes quadratiques paramétriques, on montre que le chemin de régularisation associé à certains hyperparamètres est linéaire par morceaux et que son calcul a une complexité numérique de l'ordre d'un multiple entier de la complexité de calcul d'un modèle avec un seul jeu hyper-paramètres.<br>La thèse est organisée en trois parties. La première donne le cadre général des problèmes d'apprentissage de type SVM (Séparateurs à Vaste Marge ou Support Vector Machines) ainsi que les outils théoriques et algorithmiques permettant d'appréhender ce problème. La deuxième partie traite du problème d'apprentissage supervisé pour la classification et l'ordonnancement dans le cadre des SVM. On montre que le chemin de régularisation de ces problèmes est linéaire par morceaux. Ce résultat nous permet de développer des algorithmes originaux de discrimination et d'ordonnancement. La troisième partie aborde successivement les problèmes d'apprentissage semi supervisé et non supervisé. Pour l'apprentissage semi supervisé, nous introduisons un critère de parcimonie et proposons l'algorithme de chemin de régularisation associé. En ce qui concerne l'apprentissage non supervisé nous utilisons une approche de type "réduction de dimension". Contrairement aux méthodes à base de graphes de similarité qui utilisent un nombre fixe de voisins, nous introduisons une nouvelle méthode permettant un choix adaptatif et approprié du nombre de voisins.
2

Algorithme de chemin de régularisation pour l'apprentissage statistique

Zapien - Durand-Viel, Karina 09 July 2009 (has links) (PDF)
La sélection d'un modèle approprié est l'une des tâches essentielles de l'apprentissage statistique. En général, pour une tâche d'apprentissage donnée, on considère plusieurs classes de modèles ordonnées selon un certain ordre de " complexité". Dans ce cadre, le processus de sélection de modèle revient 'a trouver la " complexité " optimale, permettant d'estimer un modèle assurant une bonne généralisation. Ce problème de sélection de modèle se résume à l'estimation d'un ou plusieurs hyper-paramètres définissant la complexité du modèle, par opposition aux paramètres qui permettent de spécifier le modèle dans la classe de complexité choisie. L'approche habituelle pour déterminer ces hyper-paramètres consiste à utiliser une " grille ". On se donne un ensemble de valeurs possibles et on estime, pour chacune de ces valeurs, l'erreur de généralisation du meilleur modèle. On s'intéresse, dans cette thèse, à une approche alternative consistant à calculer l'ensemble des solutions possibles pour toutes les valeurs des hyper-paramètres. C'est ce qu'on appelle le chemin de régularisation. Il se trouve que pour les problèmes d'apprentissage qui nous intéressent, des programmes quadratiques paramétriques, on montre que le chemin de régularisation associé à certains hyper-paramètres est linéaire par morceaux et que son calcul a une complexité numérique de l'ordre d'un multiple entier de la complexité de calcul d'un modèle avec un seul jeu hyper-paramètres. La thèse est organisée en trois parties. La première donne le cadre général des problèmes d'apprentissage de type SVM (Séparateurs à Vaste Marge ou Support Vector Machines) ainsi que les outils théoriques et algorithmiques permettant d'appréhender ce problème. La deuxième partie traite du problème d'apprentissage supervisé pour la classification et l'ordonnancement dans le cadre des SVM. On montre que le chemin de régularisation de ces problèmes est linéaire par morceaux. Ce résultat nous permet de développer des algorithmes originaux de discrimination et d'ordonnancement. La troisième partie aborde successivement les problèmes d'apprentissage semi supervisé et non supervisé. Pour l'apprentissage semi supervisé, nous introduisons un critère de parcimonie et proposons l'algorithme de chemin de régularisation associé. En ce qui concerne l'apprentissage non supervisé nous utilisons une approche de type " réduction de dimension ". Contrairement aux méthodes à base de graphes de similarité qui utilisent un nombre fixe de voisins, nous introduisons une nouvelle méthode permettant un choix adaptatif et approprié du nombre de voisins.
3

Algorithme de chemin de régularisation pour l'apprentissage statistique / Regularization path algorithm for statistical learning

Zapién Arreola, Karina 09 July 2009 (has links)
La sélection d’un modèle approprié est l’une des tâches essentielles de l’apprentissage statistique. En général, pour une tâche d’apprentissage donnée, on considère plusieurs classes de modèles ordonnées selon un certain ordre de « complexité». Dans ce cadre, le processus de sélection de modèle revient `a trouver la « complexité » optimale, permettant d’estimer un modèle assurant une bonne généralisation. Ce problème de sélection de modèle se résume à l’estimation d’un ou plusieurs hyper-paramètres définissant la complexité du modèle, par opposition aux paramètres qui permettent de spécifier le modèle dans la classe de complexité choisie. L’approche habituelle pour déterminer ces hyper-paramètres consiste à utiliser une « grille ». On se donne un ensemble de valeurs possibles et on estime, pour chacune de ces valeurs, l’erreur de généralisation du meilleur modèle. On s’intéresse, dans cette thèse, à une approche alternative consistant à calculer l’ensemble des solutions possibles pour toutes les valeurs des hyper-paramètres. C’est ce qu’on appelle le chemin de régularisation. Il se trouve que pour les problèmes d’apprentissage qui nous intéressent, des programmes quadratiques paramétriques, on montre que le chemin de régularisation associé à certains hyper-paramètres est linéaire par morceaux et que son calcul a une complexité numérique de l’ordre d’un multiple entier de la complexité de calcul d’un modèle avec un seul jeu hyper-paramètres. La thèse est organisée en trois parties. La première donne le cadre général des problèmes d’apprentissage de type SVM (Séparateurs à Vaste Marge ou Support Vector Machines) ainsi que les outils théoriques et algorithmiques permettant d’appréhender ce problème. La deuxième partie traite du problème d’apprentissage supervisé pour la classification et l’ordonnancement dans le cadre des SVM. On montre que le chemin de régularisation de ces problèmes est linéaire par morceaux. Ce résultat nous permet de développer des algorithmes originaux de discrimination et d’ordonnancement. La troisième partie aborde successivement les problèmes d’apprentissage semi supervisé et non supervisé. Pour l’apprentissage semi supervisé, nous introduisons un critère de parcimonie et proposons l’algorithme de chemin de régularisation associé. En ce qui concerne l’apprentissage non supervisé nous utilisons une approche de type « réduction de dimension ». Contrairement aux méthodes à base de graphes de similarité qui utilisent un nombre fixe de voisins, nous introduisons une nouvelle méthode permettant un choix adaptatif et approprié du nombre de voisins. / The selection of a proper model is an essential task in statistical learning. In general, for a given learning task, a set of parameters has to be chosen, each parameter corresponds to a different degree of “complexity”. In this situation, the model selection procedure becomes a search for the optimal “complexity”, allowing us to estimate a model that assures a good generalization. This model selection problem can be summarized as the calculation of one or more hyperparameters defining the model complexity in contrast to the parameters that allow to specify a model in the chosen complexity class. The usual approach to determine these parameters is to use a “grid search”. Given a set of possible values, the generalization error for the best model is estimated for each of these values. This thesis is focused in an alternative approach consisting in calculating the complete set of possible solution for all hyperparameter values. This is what is called the regularization path. It can be shown that for the problems we are interested in, parametric quadratic programming (PQP), the corresponding regularization path is piece wise linear. Moreover, its calculation is no more complex than calculating a single PQP solution. This thesis is organized in three chapters, the first one introduces the general setting of a learning problem under the Support Vector Machines’ (SVM) framework together with the theory and algorithms that allow us to find a solution. The second part deals with supervised learning problems for classification and ranking using the SVM framework. It is shown that the regularization path of these problems is piecewise linear and alternative proofs to the one of Rosset [Ross 07b] are given via the subdifferential. These results lead to the corresponding algorithms to solve the mentioned supervised problems. The third part deals with semi-supervised learning problems followed by unsupervised learning problems. For the semi-supervised learning a sparsity constraint is introduced along with the corresponding regularization path algorithm. Graph-based dimensionality reduction methods are used for unsupervised learning problems. Our main contribution is a novel algorithm that allows to choose the number of nearest neighbors in an adaptive and appropriate way contrary to classical approaches based on a fix number of neighbors.
4

High-Order Inference, Ranking, and Regularization Path for Structured SVM / Inférence d'ordre supérieur, Classement, et Chemin de Régularisation pour les SVM Structurés

Dokania, Puneet Kumar 30 May 2016 (has links)
Cette thèse présente de nouvelles méthodes pour l'application de la prédiction structurée en vision numérique et en imagerie médicale.Nos nouvelles contributions suivent quatre axes majeurs.La première partie de cette thèse étudie le problème d'inférence d'ordre supérieur.Nous présentons une nouvelle famille de problèmes de minimisation d'énergie discrète, l'étiquetage parcimonieux, encourageant la parcimonie des étiquettes.C'est une extension naturelle des problèmes connus d'étiquetage de métriques aux potentiels d'ordre élevé.Nous proposons par ailleurs une généralisation du modèle Pn-Potts, le modèle Pn-Potts hiérarchique.Enfin, nous proposons un algorithme parallélisable à proposition de mouvements avec de fortes bornes multiplicatives pour l'optimisation du modèle Pn-Potts hiérarchique et l'étiquetage parcimonieux.La seconde partie de cette thèse explore le problème de classement en utilisant de l'information d'ordre élevé.Nous introduisons deux cadres différents pour l'incorporation d'information d'ordre élevé dans le problème de classement.Le premier modèle, que nous nommons SVM binaire d'ordre supérieur (HOB-SVM), optimise une borne supérieure convexe sur l'erreur 0-1 pondérée tout en incorporant de l'information d'ordre supérieur en utilisant un vecteur de charactéristiques jointes.Le classement renvoyé par HOB-SVM est obtenu en ordonnant les exemples selon la différence entre la max-marginales de l'affectation d'un exemple à la classe associée et la max-marginale de son affectation à la classe complémentaire.Le second modèle, appelé AP-SVM d'ordre supérieur (HOAP-SVM), s'inspire d'AP-SVM et de notre premier modèle, HOB-SVM.Le modèle correspond à une optimisation d'une borne supérieure sur la précision moyenne, à l'instar d'AP-SVM, qu'il généralise en permettant également l'incorporation d'information d'ordre supérieur.Nous montrons comment un optimum local du problème d'apprentissage de HOAP-SVM peut être déterminé efficacement grâce à la procédure concave-convexe.En utilisant des jeux de données standards, nous montrons empiriquement que HOAP-SVM surpasse les modèles de référence en utilisant efficacement l'information d'ordre supérieur tout en optimisant directement la fonction d'erreur appropriée.Dans la troisième partie, nous proposons un nouvel algorithme, SSVM-RP, pour obtenir un chemin de régularisation epsilon-optimal pour les SVM structurés.Nous présentons également des variantes intuitives de l'algorithme Frank-Wolfe pour l'optimisation accélérée de SSVM-RP.De surcroît, nous proposons une approche systématique d'optimisation des SSVM avec des contraintes additionnelles de boîte en utilisant BCFW et ses variantes.Enfin, nous proposons un algorithme de chemin de régularisation pour SSVM avec des contraintes additionnelles de positivité/negativité.Dans la quatrième et dernière partie de la thèse, en appendice, nous montrons comment le cadre de l'apprentissage semi-supervisé des SVM à variables latentes peut être employé pour apprendre les paramètres d'un problème complexe de recalage déformable.Nous proposons un nouvel algorithme discriminatif semi-supervisé pour apprendre des métriques de recalage spécifiques au contexte comme une combinaison linéaire des métriques conventionnelles.Selon l'application, les métriques traditionnelles sont seulement partiellement sensibles aux propriétés anatomiques des tissus.Dans ce travail, nous cherchons à déterminer des métriques spécifiques à l'anatomie et aux tissus, par agrégation linéaire de métriques connues.Nous proposons un algorithme d'apprentissage semi-supervisé pour estimer ces paramètres conditionnellement aux classes sémantiques des données, en utilisant un jeu de données faiblement annoté.Nous démontrons l'efficacité de notre approche sur trois jeux de données particulièrement difficiles dans le domaine de l'imagerie médicale, variables en terme de structures anatomiques et de modalités d'imagerie. / This thesis develops novel methods to enable the use of structured prediction in computer vision and medical imaging. Specifically, our contributions are four fold. First, we propose a new family of high-order potentials that encourage parsimony in the labeling, and enable its use by designing an accurate graph cuts based algorithm to minimize the corresponding energy function. Second, we show how the average precision SVM formulation can be extended to incorporate high-order information for ranking. Third, we propose a novel regularization path algorithm for structured SVM. Fourth, we show how the weakly supervised framework of latent SVM can be employed to learn the parameters for the challenging deformable registration problem.In more detail, the first part of the thesis investigates the high-order inference problem. Specifically, we present a novel family of discrete energy minimization problems, which we call parsimonious labeling. It is a natural generalization of the well known metric labeling problems for high-order potentials. In addition to this, we propose a generalization of the Pn-Potts model, which we call Hierarchical Pn-Potts model. In the end, we propose parallelizable move making algorithms with very strong multiplicative bounds for the optimization of the hierarchical Pn-Potts model and the parsimonious labeling.Second part of the thesis investigates the ranking problem while using high-order information. Specifically, we introduce two alternate frameworks to incorporate high-order information for the ranking tasks. The first framework, which we call high-order binary SVM (HOB-SVM), optimizes a convex upperbound on weighted 0-1 loss while incorporating high-order information using joint feature map. The rank list for the HOB-SVM is obtained by sorting samples using max-marginals based scores. The second framework, which we call high-order AP-SVM (HOAP-SVM), takes its inspiration from AP-SVM and HOB-SVM (our first framework). Similar to AP-SVM, it optimizes upper bound on average precision. However, unlike AP-SVM and similar to HOB-SVM, it can also encode high-order information. The main disadvantage of HOAP-SVM is that estimating its parameters requires solving a difference-of-convex program. We show how a local optimum of the HOAP-SVM learning problem can be computed efficiently by the concave-convex procedure. Using standard datasets, we empirically demonstrate that HOAP-SVM outperforms the baselines by effectively utilizing high-order information while optimizing the correct loss function.In the third part of the thesis, we propose a new algorithm SSVM-RP to obtain epsilon-optimal regularization path of structured SVM. We also propose intuitive variants of the Block-Coordinate Frank-Wolfe algorithm (BCFW) for the faster optimization of the SSVM-RP algorithm. In addition to this, we propose a principled approach to optimize the SSVM with additional box constraints using BCFW and its variants. In the end, we propose regularization path algorithm for SSVM with additional positivity/negativity constraints.In the fourth and the last part of the thesis (Appendix), we propose a novel weakly supervised discriminative algorithm for learning context specific registration metrics as a linear combination of conventional metrics. Conventional metrics can cope partially - depending on the clinical context - with tissue anatomical properties. In this work we seek to determine anatomy/tissue specific metrics as a context-specific aggregation/linear combination of known metrics. We propose a weakly supervised learning algorithm for estimating these parameters conditionally to the data semantic classes, using a weak training dataset. We show the efficacy of our approach on three highly challenging datasets in the field of medical imaging, which vary in terms of anatomical structures and image modalities.
5

Safe optimization algorithms for variable selection and hyperparameter tuning / Algorithmes d’optimisation sûrs pour la sélection de variables et le réglage d’hyperparamètre

Ndiaye, Eugene 04 October 2018 (has links)
Le traitement massif et automatique des données requiert le développement de techniques de filtration des informations les plus importantes. Parmi ces méthodes, celles présentant des structures parcimonieuses se sont révélées idoines pour améliorer l’efficacité statistique et computationnelle des estimateurs, dans un contexte de grandes dimensions. Elles s’expriment souvent comme solution de la minimisation du risque empirique régularisé s’écrivant comme une somme d’un terme lisse qui mesure la qualité de l’ajustement aux données, et d’un terme non lisse qui pénalise les solutions complexes. Cependant, une telle manière d’inclure des informations a priori, introduit de nombreuses difficultés numériques pour résoudre le problème d’optimisation sous-jacent et pour calibrer le niveau de régularisation. Ces problématiques ont été au coeur des questions que nous avons abordées dans cette thèse.Une technique récente, appelée «Screening Rules», propose d’ignorer certaines variables pendant le processus d’optimisation en tirant bénéfice de la parcimonie attendue des solutions. Ces règles d’élimination sont dites sûres lorsqu’elles garantissent de ne pas rejeter les variables à tort. Nous proposons un cadre unifié pour identifier les structures importantes dans ces problèmes d’optimisation convexes et nous introduisons les règles «Gap Safe Screening Rules». Elles permettent d’obtenir des gains considérables en temps de calcul grâce à la réduction de la dimension induite par cette méthode. De plus, elles s’incorporent facilement aux algorithmes itératifs et s’appliquent à un plus grand nombre de problèmes que les méthodes précédentes.Pour trouver un bon compromis entre minimisation du risque et introduction d’un biais d’apprentissage, les algorithmes d’homotopie offrent la possibilité de tracer la courbe des solutions en fonction du paramètre de régularisation. Toutefois, ils présentent des instabilités numériques dues à plusieurs inversions de matrice, et sont souvent coûteux en grande dimension. Aussi, ils ont des complexités exponentielles en la dimension du modèle dans des cas défavorables. En autorisant des solutions approchées, une approximation de la courbe des solutions permet de contourner les inconvénients susmentionnés. Nous revisitons les techniques d’approximation des chemins de régularisation pour une tolérance prédéfinie, et nous analysons leur complexité en fonction de la régularité des fonctions de perte en jeu. Il s’ensuit une proposition d’algorithmes optimaux ainsi que diverses stratégies d’exploration de l’espace des paramètres. Ceci permet de proposer une méthode de calibration de la régularisation avec une garantie de convergence globale pour la minimisation du risque empirique sur les données de validation.Le Lasso, un des estimateurs parcimonieux les plus célèbres et les plus étudiés, repose sur une théorie statistique qui suggère de choisir la régularisation en fonction de la variance des observations. Ceci est difficilement utilisable en pratique car, la variance du modèle est une quantité souvent inconnue. Dans de tels cas, il est possible d’optimiser conjointement les coefficients de régression et le niveau de bruit. Ces estimations concomitantes, apparues dans la littérature sous les noms de Scaled Lasso, Square-Root Lasso, fournissent des résultats théoriques aussi satisfaisants que celui du Lasso tout en étant indépendant de la variance réelle. Bien que présentant des avancées théoriques et pratiques importantes, ces méthodes sont aussi numériquement instables et les algorithmes actuellement disponibles sont coûteux en temps de calcul. Nous illustrons ces difficultés et nous proposons à la fois des modifications basées sur des techniques de lissage pour accroitre la stabilité numérique de ces estimateurs, ainsi qu’un algorithme plus efficace pour les obtenir. / Massive and automatic data processing requires the development of techniques able to filter the most important information. Among these methods, those with sparse structures have been shown to improve the statistical and computational efficiency of estimators in a context of large dimension. They can often be expressed as a solution of regularized empirical risk minimization and generally lead to non differentiable optimization problems in the form of a sum of a smooth term, measuring the quality of the fit, and a non-smooth term, penalizing complex solutions. Although it has considerable advantages, such a way of including prior information, unfortunately introduces many numerical difficulties both for solving the underlying optimization problem and to calibrate the level of regularization. Solving these issues has been at the heart of this thesis. A recently introduced technique, called "Screening Rules", proposes to ignore some variables during the optimization process by benefiting from the expected sparsity of the solutions. These elimination rules are said to be safe when the procedure guarantees to not reject any variable wrongly. In this work, we propose a unified framework for identifying important structures in these convex optimization problems and we introduce the "Gap Safe Screening Rules". They allows to obtain significant gains in computational time thanks to the dimensionality reduction induced by this method. In addition, they can be easily inserted into iterative algorithms and apply to a large number of problems.To find a good compromise between minimizing risk and introducing a learning bias, (exact) homotopy continuation algorithms offer the possibility of tracking the curve of the solutions as a function of the regularization parameters. However, they exhibit numerical instabilities due to several matrix inversions and are often expensive in large dimension. Another weakness is that a worst-case analysis shows that they have exact complexities that are exponential in the dimension of the model parameter. Allowing approximated solutions makes possible to circumvent the aforementioned drawbacks by approximating the curve of the solutions. In this thesis, we revisit the approximation techniques of the regularization paths given a predefined tolerance and we propose an in-depth analysis of their complexity w.r.t. the regularity of the loss functions involved. Hence, we propose optimal algorithms as well as various strategies for exploring the parameters space. We also provide calibration method (for the regularization parameter) that enjoys globalconvergence guarantees for the minimization of the empirical risk on the validation data.Among sparse regularization methods, the Lasso is one of the most celebrated and studied. Its statistical theory suggests choosing the level of regularization according to the amount of variance in the observations, which is difficult to use in practice because the variance of the model is oftenan unknown quantity. In such case, it is possible to jointly optimize the regression parameter as well as the level of noise. These concomitant estimates, appeared in the literature under the names of Scaled Lasso or Square-Root Lasso, and provide theoretical results as sharp as that of theLasso while being independent of the actual noise level of the observations. Although presenting important advances, these methods are numerically unstable and the currently available algorithms are expensive in computation time. We illustrate these difficulties and we propose modifications based on smoothing techniques to increase stability of these estimators as well as to introduce a faster algorithm.
6

Sélection de modèle par chemin de régularisation pour les machines à vecteurs support à coût quadratique / Model selection using regularization path for quadratic cost support vector machines

Bonidal, Rémi 19 June 2013 (has links)
La sélection de modèle est un thème majeur de l'apprentissage statistique. Dans ce manuscrit, nous introduisons des méthodes de sélection de modèle dédiées à des SVM bi-classes et multi-classes. Ces machines ont pour point commun d'être à coût quadratique, c'est-à-dire que le terme empirique de la fonction objectif de leur problème d'apprentissage est une forme quadratique. Pour les SVM, la sélection de modèle consiste à déterminer la valeur optimale du coefficient de régularisation et à choisir un noyau approprié (ou les valeurs de ses paramètres). Les méthodes que nous proposons combinent des techniques de parcours du chemin de régularisation avec de nouveaux critères de sélection. La thèse s'articule autour de trois contributions principales. La première est une méthode de sélection de modèle par parcours du chemin de régularisation dédiée à la l2-SVM. Nous introduisons à cette occasion de nouvelles approximations de l'erreur en généralisation. Notre deuxième contribution principale est une extension de la première au cas multi-classe, plus précisément à la M-SVM². Cette étude nous a conduits à introduire une nouvelle M-SVM, la M-SVM des moindres carrés. Nous présentons également de nouveaux critères de sélection de modèle pour la M-SVM de Lee, Lin et Wahba à marge dure (et donc la M-SVM²) : un majorant de l'erreur de validation croisée leave-one-out et des approximations de cette erreur. La troisième contribution principale porte sur l'optimisation des valeurs des paramètres du noyau. Notre méthode se fonde sur le principe de maximisation de l'alignement noyau/cible, dans sa version centrée. Elle l'étend à travers l'introduction d'un terme de régularisation. Les évaluations expérimentales de l'ensemble des méthodes développées s'appuient sur des benchmarks fréquemment utilisés dans la littérature, des jeux de données jouet et des jeux de données associés à des problèmes du monde réel / Model selection is of major interest in statistical learning. In this document, we introduce model selection methods for bi-class and multi-class support vector machines. We focus on quadratic loss machines, i.e., machines for which the empirical term of the objective function of the learning problem is a quadratic form. For SVMs, model selection consists in finding the optimal value of the regularization coefficient and choosing an appropriate kernel (or the values of its parameters). The proposed methods use path-following techniques in combination with new model selection criteria. This document is structured around three main contributions. The first one is a method performing model selection through the use of the regularization path for the l2-SVM. In this framework, we introduce new approximations of the generalization error. The second main contribution is the extension of the first one to the multi-category setting, more precisely the M-SVM². This study led us to derive a new M-SVM, the least squares M-SVM. Additionally, we present new model selection criteria for the M-SVM introduced by Lee, Lin and Wahba (and thus the M-SVM²). The third main contribution deals with the optimization of the values of the kernel parameters. Our method makes use of the principle of kernel-target alignment with centered kernels. It extends it through the introduction of a regularization term. Experimental validation of these methods was performed on classical benchmark data, toy data and real-world data

Page generated in 0.1188 seconds