• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 21
  • 20
  • 10
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 133
  • 133
  • 31
  • 28
  • 26
  • 24
  • 24
  • 20
  • 19
  • 18
  • 17
  • 15
  • 15
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Assessing student process skills and providing feedback to enhance learning in analytical chemistry

Schmidt-McCormack, Jennifer Ann 01 August 2017 (has links)
Process skills, such as critical thinking, communication, and problem solving, are sometimes referred to as soft skills or professional skills and have been identified by instructors and employers alike as being desirable skills for students to acquire before they graduate. The development and assessment of process skills in students were important learning objectives for both the ANA-POGIL (Analytical Process Oriented Guided Inquiry Learning) and ELIPSS (Enhancing Learning by Improving Process Skills in STEM) projects. The ANA-POGIL project consisted of a faculty consortium that was comprised of chemistry faculty. The ELIPSS project currently consists of a faculty consortium that includes representation from multiple STEM disciplines, including biology, chemistry, anatomy & physiology, math, engineering, and physics. In order to optimize the student development of process skills there should be alignment between the instructors’ goals for their courses and what they assess. The faculty members associated with both of these projects wanted to enhance students’ development of process skills by providing them with feedback, and a problem solving rubric was developed to meet those needs. The rubric categories were constructed based on faculty definitions and literature that described characteristics of successful problem solvers. To the test the rubric’s validity, it was piloted by both faculty and students. The rubric was then used in an advanced analytical instrumental laboratory course to assess the extent to which evidence of students’ process skills changed over the course of a semester. Students from the laboratory course were interviewed to gather their insights into the rubric and how they used the feedback. Findings suggest that instructors should emphasize the importance of process skills and incorporate them directly into their courses if they want students to value them. Even though students were provided regular feedback, their problem solving scores did not change appreciably throughout the semester. While students found the rubric feedback useful on the surface, they did not use the feedback in any significant way to improve on their laboratory reports because there was no grade or incentive tied to the rubrics. If faculty want students to obtain process skills, they should place some incentive on the acquisition and development of them. Another goal of the ANA-POGIL project was to develop multi-part, open-ended questions to assess process skills. To analyze evidence of the process skills that were present in the student responses, a qualitative coding scheme focused on three process skills (information processing, problem solving, and critical thinking) was used. There was overall good alignment between the process skills the faculty had identified for the exam questions and the evidence that was found in the student responses. Findings show that if instructors value eliciting a certain process skill in students’ responses, then they should be extremely explicit in how the exam structure is worded to elicit that skill. Well-designed laboratories help students develop skills in experimental design, data analysis, and communication in addition to critical technical skills. A common course structure that presents challenges for both the students and instructional staff is in upper-level undergraduate chemistry laboratories where students perform experiments in a rotational style, with each group of students working on one instrument per week. As a solution to this challenge, a set of pre-laboratory videos were generated for each experiment. Laboratory observations and student interviews were conducted to investigate how students were using the resources and to characterize their experiences in the laboratory. Findings show that students used the resources to come more prepared to complete the laboratory experiments more independently with less instructional intervention. Findings from the student observations and experiences in the laboratory show that students enjoyed working with both their peers and the instructional team to successfully complete the experiments.
42

Personal Epistemological Growth in a College Chemistry Laboratory Environment

Keen-Rocha, Linda S 09 May 2008 (has links)
The nature of this study was to explore changes in beliefs and lay a foundation for focusing on more specific features of reasoning related to personal epistemological and NOS beliefs in light of specific science laboratory instructional pedagogical practices (e.g., pre- and post- laboratory activities, laboratory work) for future research. This research employed a mixed methodology, foregrounding qualitative data. The total population consisted of 56 students enrolled in several sections of a general chemistry laboratory course, with the qualitative analysis focusing on the in-depth interviews. A quantitative NOS and epistemological beliefs measure was administered pre- and post-instruction. These measures were triangulated with pre-post interviews to assure the rigor of the descriptions generated. Although little quantitative change in NOS was observed from the pre-post NSKS assessment a more noticeable qualitative change was reflected by the participants during their final interviews. The NSKS results: the mean gain scores for the overall score and all dimensions, except for amoral were found to be significant at p < [or] = .05. However there was a more moderate change in the populations' broader epistemological beliefs (EBAPS) which was supported during the final interviews. The EBAPS results: the mean gain scores for the overall score and all dimensions, except for the source of ability to learn were found to be significant at p < [or] = .05. The participants' identified the laboratory work as the most effective instructional feature followed by the post-laboratory activities. The pre-laboratory was identified as being the least effective feature. The participants suggested the laboratory work offered real-life experiences, group discussions, and teamwork which added understanding and meaning to their learning. The post-laboratory was viewed as necessary in tying all the information together and being able to see the bigger picture. What one cannot infer at this point is whether these belief changes and beliefs about laboratory instruction are enduring or whether some participants are simply more adaptable than others are to the learning environment. More research studies are needed to investigate the effects of laboratory instruction on student beliefs and understanding.
43

Using The Science Writing Heuristic Approach To Promote Student Understanding In Chemical Changes And Mixtures

Kingir, Sevgi 01 February 2011 (has links) (PDF)
The purpose of the present study was to investigate the effect of Science Writing Heuristic (SWH) approach on 9th grade students&rsquo / understanding of chemistry concepts and chemistry achievement in chemical changes and mixtures units. Four 9th grade classes taught by the two chemistry teachers from a public high school were selected for the study. Each teacher&rsquo / s one intact class was assigned as the experimental group and the other class was assigned as the control group. Students in the experimental group were instructed by the SWH approach, while those in control groups were instructed with traditionally designed chemistry instruction. Tests measuring students&rsquo / conceptual understanding and achievement in the units of chemical changes and mixtures were administered as pre-test and post-test to students in both groups, and a test measuring students&rsquo / attitudes toward chemistry was administered to students in both groups at the beginning of the instruction. At the end of the instruction, semi-structured interviews were conducted with 13 students from experimental group and 8 students from control group. The quantitative data were analyzed by using Multivariate Analysis of Covariance (MANCOVA). The results revealed that the SWH approach was superior to the traditional approach on students&rsquo / understanding of the concepts in the units of chemical changes and mixtures. In addition, interview results indicated that students in experimental group demonstrated better scientific understanding of chemical change and mixture concepts compared to those in control group. The interview results also showed that students in experimental group developed positive attitudes toward chemistry and SWH approach.
44

Of Mental Models, Assumptions and Heuristics: The Case of Acids and Acid Strength

McClary, LaKeisha Michelle January 2010 (has links)
This study explored what cognitive resources (i.e., units of knowledge necessary to learn) first-semester organic chemistry students used to make decisions about acid strength and how those resources guided the prediction, explanation and justification of trends in acid strength. We were specifically interested in the identifying and characterizing the mental models, assumptions and heuristics that students relied upon to make their decisions, in most cases under time constraints. The views about acids and acid strength were investigated for twenty undergraduate students. Data sources for this study included written responses and individual interviews.The data was analyzed using a qualitative methodology to answer five research questions. Data analysis regarding these research questions was based on existing theoretical frameworks: problem representation (Chi, Feltovich & Glaser, 1981), mental models (Johnson-Laird, 1983); intuitive assumptions (Talanquer, 2006), and heuristics (Evans, 2008). These frameworks were combined to develop the framework from which our data were analyzed.Results indicated that first-semester organic chemistry students' use of cognitive resources was complex and dependent on their understanding of the behavior of acids. Expressed mental models were generated using prior knowledge and assumptions about acids and acid strength; these models were then employed to make decisions. Explicit and implicit features of the compounds in each task mediated participants' attention, which triggered the use of a very limited number of heuristics, or shortcut reasoning strategies. Many students, however, were able to apply more effortful analytic reasoning, though correct trends were predicted infrequently. Most students continued to use their mental models, assumptions and heuristics to explain a given trend in acid strength and to justify their predicted trends, but the tasks influenced a few students to shift from one model to another model. An emergent finding from this project was that the problem representation greatly influenced students' ability to make correct predictions in acid strength.
45

Constructing School Science: Physics, Biology, and Chemistry Education in Ontario High Schools, 1880 -1940

Hoffman, Michelle Diane 19 June 2014 (has links)
This thesis is a history of science education reform in Ontario, from 1880 to 1940. It examines successive eras of science education reform in secondary (pre-university) schools, including the rise of laboratory science; the spread of general science programs; and efforts to teach science “humanistically.” This research considers the rhetorical strategies employed by scientists and educators to persuade educational policymakers and the public about the value and purpose of science education. Their efforts hinged in large part on building a moral framework for school science, which they promoted an essential stimulus to students’ mental development and a check on the emotive influence of literature and the arts. These developments are placed in international context by examining how educational movements conceived in other places, especially the United States and Britain, were filtered and transformed in the distinct educational context of Ontario. Finally, the sometimes-blurry boundaries between “academic” science education and technical education are explored, most notably in Ontario in the late nineteenth century, when science education was undergoing a rapid, driven expansion in the province’s high schools. This research contributes to a relatively recent body of literature that promotes a greater appreciation of pre-college science education – an area that has often been overlooked in favour of higher education and the training of specialists – as an important window onto the public perception of science.
46

Constructing School Science: Physics, Biology, and Chemistry Education in Ontario High Schools, 1880 -1940

Hoffman, Michelle Diane 19 June 2014 (has links)
This thesis is a history of science education reform in Ontario, from 1880 to 1940. It examines successive eras of science education reform in secondary (pre-university) schools, including the rise of laboratory science; the spread of general science programs; and efforts to teach science “humanistically.” This research considers the rhetorical strategies employed by scientists and educators to persuade educational policymakers and the public about the value and purpose of science education. Their efforts hinged in large part on building a moral framework for school science, which they promoted an essential stimulus to students’ mental development and a check on the emotive influence of literature and the arts. These developments are placed in international context by examining how educational movements conceived in other places, especially the United States and Britain, were filtered and transformed in the distinct educational context of Ontario. Finally, the sometimes-blurry boundaries between “academic” science education and technical education are explored, most notably in Ontario in the late nineteenth century, when science education was undergoing a rapid, driven expansion in the province’s high schools. This research contributes to a relatively recent body of literature that promotes a greater appreciation of pre-college science education – an area that has often been overlooked in favour of higher education and the training of specialists – as an important window onto the public perception of science.
47

Digital technologies and multimodal communication in the chemistry classroom

Annette Hilton Unknown Date (has links)
Students of chemistry encounter difficulties due to its abstract nature and the need to understand and communicate its concepts on macro, submicro, and symbolic levels using a range of representations and representational modes. Research suggests that when students are required to use multiple representations they have difficulties in understanding individual representations and in negotiating meaning through their use. This study sought to address these issues through the application of digital technologies. The main areas of research that provided a theoretical framework for this study were multiple representations in chemistry education and writing-to-learn in science. Other research in these areas has suggested that a better understanding of multiple representations might enhance students’ chemical literacy; however, limited research has investigated the impact of using digital technologies to create multimodal texts on students’ learning in chemistry, particularly the development of students’ skills in generating and integrating multiple representations. Until recently, much of the writing-to-learn research has focused on written composition. The knowledge-transforming model was proposed by Bereiter and Scardamalia (1987) to explain the influence of written composition on knowledge construction. However, having been developed prior to the time when students had ready access to digital technologies and a consequent capacity to create multimedia and digital texts, this model does not account for the production of such multimodal texts. This study examined the effect of learning experiences that utilised digital technologies to support students in using multiple representations and through writing-to-learn activities to create multimodal texts on learning outcomes in chemistry. The study was conducted in a metropolitan public co-educational high school in Queensland, Australia. Two Year 11 chemistry classes participated in the study, which was conducted in the first term of a 2-year course in which students learn chemistry as a separate discipline. The study consisted of a pilot study and an intervention study with two phases. The pilot study was used to trial the learning activities and data collection instruments and to gain an insight into instructional approaches that might be appropriate for the study. Phase 1 of the intervention study employed a pretest–posttest design. In this phase, students learned about chemical bonding and structure and their effects on the properties and behaviours of different materials. They also learned about the multiple representations used to understand and communicate about chemical bonding and structure. Within a modified crossover design, Phase 2 of the study employed mixed methods to compare the effects on learning outcomes when they created two different scientific texts: a digital poster and a laboratory report. Both text types required students to integrate multiple representations to report on their learning during laboratory investigations. These text types were chosen because they are commonly used by scientists to communicate their experimental findings. In Phase 1, students engaged in computer-based inquiries using both molecular modelling and simulation software to investigate phenomena such as intra- and inter-molecular bonding and their effects on properties, the differences between various types of bonds, the multiple representations used to describe and investigate bonding and structure, and to present their understanding to others. In Phase 2, students used a range of scaffolding resources to design and carry out two inquiries about the chemistry of biomaterials. In the first inquiry, students made and compared the properties of two different bioplastic films; in the second, students compared the relative fermentation rates of a range of carbohydrates. In both inquiries, students were required to report their findings and explain them on the submicro level using appropriate representations. Scaffolds included Science Writing Heuristics, which explicitly required students to consider which multiple representations would support their claims and explanations of data; digital resources for selecting, modifying, or creating representations; and genre templates. Pretest–posttest comparisons for both phases showed that the instructional approaches and resources used were effective for enhancing students’ learning outcomes. In all comparisons, the posttest performances were significantly higher. In the first phase, several of the identified alternative or missing conceptions about chemical bonding were effectively addressed, and in both phases, students’ conceptual understanding and their representational competencies were enhanced. The pretest–posttest comparisons for Phase 2 suggested that creating a diversified text – a digital poster – for explaining experimental results is at least as effective for enhancing understanding and representational competencies as creating a more traditional laboratory report. Other data were analysed to gain an insight into how or why the instructional strategies and resources used might have been effective. The student interviews revealed a number of advantages of using digital technologies, including promotion of higher order thinking, enhanced motivation and interest, the capacity of digital technologies to support and enhance visualisation, and the production of multiple representations in multiple modes. Students suggested that the digital resources allowed them to make links between macroscopic, molecular, and symbolic levels and to include a range of representations in their explanations. The evaluation questionnaire revealed similar trends. Analysis of the students’ texts suggested that the approaches used in Phase 2 were effective in supporting students’ content and rhetorical problem solving and the interactions between the two. Students utilised a range of representations, particularly structural diagrams, when making explanations of their macroscopic data on the submicro level. This study has implications for the instructional approaches used by chemistry teachers because it showed that integrating digital technologies into learning environments is effective when introducing students to the multiple representations used in chemistry and in the development of students’ chemical literacies. It also contributes to writing-to-learn research by focusing on multimodal communication and the benefits of creating multimodal texts for presenting, organising, and explaining data, and for representing knowledge. Significant findings of the study relate to the importance of digital technologies in generating multimodal texts and representations for instruction, scaffolding, and in student-centred inquiry-based learning. Further research might focus on the use of such resources for addressing other commonly identified alternative conceptions, the creation of other multimodal text types, the use of other digital technologies or authoring tools, or on the development of teachers’ technological pedagogical content knowledge, which is required for effective classroom implementation of these resources and strategies.
48

Digital technologies and multimodal communication in the chemistry classroom

Annette Hilton Unknown Date (has links)
Students of chemistry encounter difficulties due to its abstract nature and the need to understand and communicate its concepts on macro, submicro, and symbolic levels using a range of representations and representational modes. Research suggests that when students are required to use multiple representations they have difficulties in understanding individual representations and in negotiating meaning through their use. This study sought to address these issues through the application of digital technologies. The main areas of research that provided a theoretical framework for this study were multiple representations in chemistry education and writing-to-learn in science. Other research in these areas has suggested that a better understanding of multiple representations might enhance students’ chemical literacy; however, limited research has investigated the impact of using digital technologies to create multimodal texts on students’ learning in chemistry, particularly the development of students’ skills in generating and integrating multiple representations. Until recently, much of the writing-to-learn research has focused on written composition. The knowledge-transforming model was proposed by Bereiter and Scardamalia (1987) to explain the influence of written composition on knowledge construction. However, having been developed prior to the time when students had ready access to digital technologies and a consequent capacity to create multimedia and digital texts, this model does not account for the production of such multimodal texts. This study examined the effect of learning experiences that utilised digital technologies to support students in using multiple representations and through writing-to-learn activities to create multimodal texts on learning outcomes in chemistry. The study was conducted in a metropolitan public co-educational high school in Queensland, Australia. Two Year 11 chemistry classes participated in the study, which was conducted in the first term of a 2-year course in which students learn chemistry as a separate discipline. The study consisted of a pilot study and an intervention study with two phases. The pilot study was used to trial the learning activities and data collection instruments and to gain an insight into instructional approaches that might be appropriate for the study. Phase 1 of the intervention study employed a pretest–posttest design. In this phase, students learned about chemical bonding and structure and their effects on the properties and behaviours of different materials. They also learned about the multiple representations used to understand and communicate about chemical bonding and structure. Within a modified crossover design, Phase 2 of the study employed mixed methods to compare the effects on learning outcomes when they created two different scientific texts: a digital poster and a laboratory report. Both text types required students to integrate multiple representations to report on their learning during laboratory investigations. These text types were chosen because they are commonly used by scientists to communicate their experimental findings. In Phase 1, students engaged in computer-based inquiries using both molecular modelling and simulation software to investigate phenomena such as intra- and inter-molecular bonding and their effects on properties, the differences between various types of bonds, the multiple representations used to describe and investigate bonding and structure, and to present their understanding to others. In Phase 2, students used a range of scaffolding resources to design and carry out two inquiries about the chemistry of biomaterials. In the first inquiry, students made and compared the properties of two different bioplastic films; in the second, students compared the relative fermentation rates of a range of carbohydrates. In both inquiries, students were required to report their findings and explain them on the submicro level using appropriate representations. Scaffolds included Science Writing Heuristics, which explicitly required students to consider which multiple representations would support their claims and explanations of data; digital resources for selecting, modifying, or creating representations; and genre templates. Pretest–posttest comparisons for both phases showed that the instructional approaches and resources used were effective for enhancing students’ learning outcomes. In all comparisons, the posttest performances were significantly higher. In the first phase, several of the identified alternative or missing conceptions about chemical bonding were effectively addressed, and in both phases, students’ conceptual understanding and their representational competencies were enhanced. The pretest–posttest comparisons for Phase 2 suggested that creating a diversified text – a digital poster – for explaining experimental results is at least as effective for enhancing understanding and representational competencies as creating a more traditional laboratory report. Other data were analysed to gain an insight into how or why the instructional strategies and resources used might have been effective. The student interviews revealed a number of advantages of using digital technologies, including promotion of higher order thinking, enhanced motivation and interest, the capacity of digital technologies to support and enhance visualisation, and the production of multiple representations in multiple modes. Students suggested that the digital resources allowed them to make links between macroscopic, molecular, and symbolic levels and to include a range of representations in their explanations. The evaluation questionnaire revealed similar trends. Analysis of the students’ texts suggested that the approaches used in Phase 2 were effective in supporting students’ content and rhetorical problem solving and the interactions between the two. Students utilised a range of representations, particularly structural diagrams, when making explanations of their macroscopic data on the submicro level. This study has implications for the instructional approaches used by chemistry teachers because it showed that integrating digital technologies into learning environments is effective when introducing students to the multiple representations used in chemistry and in the development of students’ chemical literacies. It also contributes to writing-to-learn research by focusing on multimodal communication and the benefits of creating multimodal texts for presenting, organising, and explaining data, and for representing knowledge. Significant findings of the study relate to the importance of digital technologies in generating multimodal texts and representations for instruction, scaffolding, and in student-centred inquiry-based learning. Further research might focus on the use of such resources for addressing other commonly identified alternative conceptions, the creation of other multimodal text types, the use of other digital technologies or authoring tools, or on the development of teachers’ technological pedagogical content knowledge, which is required for effective classroom implementation of these resources and strategies.
49

Textbook authors', teachers' and students' use of analogies in the teaching and learning of senior high school chemistry.

Thiele, Rodney B. January 1995 (has links)
This thesis reports a series of studies into textbook authors', teachers' and students' use of analogies to improve students' understanding of abstract chemistry concepts. The five research problems considered: (a) the nature and extent of analogy use in textbooks; (b) the views of textbook authors and editors concerning analogies; (c) how, when, and why analogies were used by experienced chemistry teachers; (d) the development of an instrument to determine chemistry students' understanding of analogies; and (e) how chemistry students use the analogies presented as part of their chemistry instruction.Study One reports the findings of an investigation of ten chemistry textbooks used by Australian students for the nature and extent of analogy inclusion. The study found that, while used sparingly, analogies were employed more frequently in the beginning of textbooks and that the analogies used concrete analog domains to describe abstract target concepts. There was considerable use of pictorial-verbal analogies although simple analogies comprised a substantial proportion and stated limitations or warnings were infrequently employed.Study Two involved interviews with the authors of eight of the above mentioned textbooks to determine authors' views on analogies and their use in textbooks and teaching. The study identified a relationship between how frequently analogies were used by the author and what he or she considered to be the characteristics of a good chemistry teacher. Each author had a good understanding of the nature of analogy and each sought a flexible environment for its use - most arguing that analogies are better used by teachers than printed in textbooks. They appeared to favour analogies embedded in text or placed in margins rather than as post-synthesisers or advance organisers.Study Three reports an investigation into six chemistry teachers' use of ++ / analogies in Western Australia and England. This study found that the teachers drew upon their experiences and professional reading as sources of the analogies that tended to be spontaneously used when they felt their students had not understood an explanation. The analogies tended to map functional attributes of abstract target concepts with some teachers using the blackboard to illustrate pictorial analogies and some including statements of limitations.Study Four describes the development of analogy maps - instruments used to determine the effectiveness with which students map given analogies. The iterative development process engaged classroom-based research methods to develop an instrument of value both for teaching and for school-related research. A rating system enables researchers to compare students' effectiveness at mapping analogies with variables such as analogy type.Studies Five and Six describe how a combination of interviews and analogy map surveys were used to investigate how students used analogies in chemistry. The study found that students felt more confident with pictorial-verbal analogies although they were not necessarily able to map these analogies better than verbal (only) analogies. Also, student mapping confidence appeared not to depend upon the level of enrichment supplied and added enrichment did not necessarily aid mapping performance. Further, the analogy maps were useful as a means to identify alternative conceptions and there was little evidence that the analogy maps contributed to the formation of alternative conceptions in the learners.The final chapter draws together and discusses the assertions made in all of the previous studies before considering the contribution of the thesis to theory building. The implications of the research are discussed and suggestions made for future research on analogies in chemistry education. The chapter ++ / concludes by outlining examples of how and where the findings of this research have begun to be disseminated.
50

A change in structure meaningful learning and cognitive development in a spiral, organic chemistry curriculum /

Grove, Nathaniel P. January 2008 (has links)
Thesis (Ph. D.)--Miami University, Dept. of Chemistry and Biochemistry, 2008. / Title from first page of PDF document. Includes bibliographical references (p. 121-127).

Page generated in 0.5378 seconds