• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inhibition of sialylation of beta1 integrin and CXCR4 by a lithocholic acid-based sialyltransferase inhibitor suppresses cancer metastasis

Chiang, Chi-hsiang 11 August 2009 (has links)
Sialyltransferases (STs), which catalyze the sialylation reaction by adding sialic acids to the terminal positions of oligosaccharide of glycoproteins and glycolipids, are over-expressed in cancer cells and associated with cancer metastasis. Until now, ST inhibitors are not applicable for clinical use because of poor cell permeability, although showing potent effect in vitro. In this study, we synthesize a lithocholic acid-based ST inhibitor AL10 and test its anti-metastatic effect. Overexpression of £\-2,3-ST is found in highly metastatic A549 and CL1-5 lung cancer cells. Confocal microscopy demonstrates that AL10 is cell permeable and may attenuate total sialylation on cell surface. AL10 has no cytotoxicity but inhibits adhesion, migration, actin polymerization and invasion of A549 and CL1-5 cells in vitro. Inhibition of adhesion and migration by AL10 is associated with reduced sialylation of beta1 integrin. In addition, activation of the beta1 integrin downstream signaling molecule focal adhesion kinase is also attenuated. More importantly, AL10 suppresses lung metastasis in vivo and this effect may be linked with reduced sialylation of the chemokine receptor CXCR4 which has been found to play a critical role in organ-specific metastasis. Serum biochemical assay indicates that AL10 does not affect liver and kidney functions of experimental animals. Taken together, we conclude that AL10 is an effective sialyltransferase inhibitor and exerts anti-metastatic effect in vivo via suppression of sialylation of beta1 integrin and CXCR4.
2

Pharmacological characterization of chemokine receptor 7 (CCR7) as a potential therapeutic target in cancer

Basheer, Haneen Adel Daoud January 2017 (has links)
The expression of CCR7 was evaluated in different cancer cell lines by using flow cytometry, western blot, Immunofluorescence and immunohistochemistry. We showed for the selected cell lines that the expression is maintained in cells grown as spheroids, and xenoplanted in mice. Furthermore, we showed the expression of CCR7 correlates with stage of the disease in patient derived head and neck cancer tissue. We also showed that expression of CCR7 in cancer cell lines correlates with migratory aptitude towards CCL21 in a scratch assay, Boyden chamber assay and spheroid invasion assay. We then showed that the expression of CCR7 is elevated under serum starvation and under hypoxia in cancer cell lines grown as monolayers and as spheroids; and that there is a correlation between hypoxia and CCR7 expression in spheroids, xenografted cells and clinical cancer tissue. However, we found that in cell line OSC-19, the increase in the expression of CCR7 did not correlate to increased migration. Our investigations following this observation showed that whilst hypoxia increases the expression of CCR7, it concurrently causes a decrease in reactive oxygen species (ROS) which strongly abrogates migratory aptitude in OSC-19, resulting in an overall loss of migration in OSC-19 cells. In addition, we characterised OSC-19 as a suitable model to evaluate small molecule CCR7 antagonists using a number of different assays. In particular, we showed that ICT13069 antagonised response of this cell line across a number of drivers of malignancy such as migration, invasion in 2D and 3D models.
3

Bioinformatic analysis of chicken chemokines, chemokine receptors, and Toll-like receptor 21

Wang, Jixin 30 October 2006 (has links)
Chemokines triggered by Toll-like receptors (TLRs) are small chemoattractant proteins, which mainly regulate leukocyte trafficking in inflammatory reactions via interaction with G protein-coupled receptors. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this study, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to identify systematically chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. The TLR family represents evolutionarily conserved components of the patternrecognizing receptors (PRRs) of the innate immune system that recognize specific pathogen-associated molecular patterns (PAMPs) through their ectodomains (ECDs). TLR's ECDs contain 19 to 25 tandem copies of leucine-rich repeat (LRR) motifs. TLRs play important roles in the activation of pro-inflammatory cytokines, chemokines and modulation of antigen-specific adaptive immune responses. To date, nine TLRs have been reported in chicken, along with a non-functional TLR8. Two non-mammalian TLRs, TLR21 and TLR22, have been identified in pufferfish and zebrafish. The objectives of this study were to determine if there is the existence of chicken genes homologous to fish-specific TLRs, and if possible ligands of these receptors exist. After searching the chicken genome sequence and EST database, a novel chicken TLR homologous to fish TLR21 was identified. Phylogenetic analysis indicated that the identified chicken TLR is the orthologue of TLR21 in fish. Bioinformatic analysis of potential PAMP binding sites within LRR insertions showed that CpG DNA is the putative ligand of this receptor.
4

Pharmacological characterization of chemokine receptor 7 (CCR7) as a potential therapeutic target in cancer

Basheer, Haneen A. January 2017 (has links)
The expression of CCR7 was evaluated in different cancer cell lines by using flow cytometry, western blot, Immunofluorescence and immunohistochemistry. We showed for the selected cell lines that the expression is maintained in cells grown as spheroids, and xenoplanted in mice. Furthermore, we showed the expression of CCR7 correlates with stage of the disease in patient derived head and neck cancer tissue. We also showed that expression of CCR7 in cancer cell lines correlates with migratory aptitude towards CCL21 in a scratch assay, Boyden chamber assay and spheroid invasion assay. We then showed that the expression of CCR7 is elevated under serum starvation and under hypoxia in cancer cell lines grown as monolayers and as spheroids; and that there is a correlation between hypoxia and CCR7 expression in spheroids, xenografted cells and clinical cancer tissue. However, we found that in cell line OSC-19, the increase in the expression of CCR7 did not correlate to increased migration. Our investigations following this observation showed that whilst hypoxia increases the expression of CCR7, it concurrently causes a decrease in reactive oxygen species (ROS) which strongly abrogates migratory aptitude in OSC-19, resulting in an overall loss of migration in OSC-19 cells. In addition, we characterised OSC-19 as a suitable model to evaluate small molecule CCR7 antagonists using a number of different assays. In particular, we showed that ICT13069 antagonised response of this cell line across a number of drivers of malignancy such as migration, invasion in 2D and 3D models. / Zarqa University / The full text was made available at the end of the embargo, 3rd December 2019
5

The Importance of Inflammatory Chemokine Receptors in The Immune Response To Leishmania Infections

Barbi, Joseph James 21 August 2008 (has links)
No description available.
6

Induced pluripotent stem cell modeling of malaria

Nah, Shirley 22 January 2016 (has links)
Malaria is one of the oldest parasitic diseases known to man, and the disease has played a role in shaping civilizations and the success of human populations over many centuries. While the malaria is well studied, it still remains a worldwide killer--claiming about 600,000 lives annually with children under the age of five representing a disproportionate population of those lethally infected. Malaria is caused by the protozoan parasite Plasmodium, which is introduced to the human body through the bite of a female Anopheles mosquito. The most lethal form of the disease is carried by the parasite Plasmodium falciparum, while the most widespread form of malaria is caused by Plasmodium vivax, the latter of which has a specific mode of entry and life cycle that makes it difficult to eradicate. The entry of P. vivax into human reticulocytes is based on the presence of the Duffy antigen chemokine receptor (DARC), which is uniquely absent in two-thirds of the Black population and populations of immediate African descent making it rare in the African region while endemic in Western and Asian countries. Inability to culture the parasite P. vivax in vitro and exhaustible tissue samples makes an accurate model of P. vivax malaria difficult to maintain ex vivo. The current study focuses on overcoming those limitations by modeling the mode of entry of P. vivax into patient-specific, induced pluripotent stem cell (iPSC)-derived erythrocyte-lineage cells by showing firstly that DARC is a measurable marker of susceptibility in vitro via FACS analysis, and that secondly, P. vivax cell culture limitations can be bypassed by creating a lentivirus designed to specifically infect DARC-expressing cells. To demonstrate the potency of this system, we show that a virus expressing the conserved region of the Duffy binding ligand, Duffy binding protein II (DBPII), can selectively infect peripheral blood mononuclear cells (PBMCs) that express DARC. Moreover, our current study focuses on the development of an iPSC-based disease model using patient samples derived from DARC expressing patients (DARC+) and DARC negative Sickle Cell Disease (SCD) patients (DARC-). We show that DARC+ iPSC-derived erythroid lineage cells express a transient population of DARC-expressing cells via FACS analysis, and we explore different protocols to stabilize this unique population. We hypothesize that DARC is a stage-specific marker for erythrocyte maturation, and we believe that any subset of cells expressing DARC consists of more mature erythrocyte-lineage cells. This study then, provides a novel platform by which to study malaria infection in a patient-specific manner while bypassing the limitations of culturing P. vivax in an in vitro culture system, as well as introducing a new way to measure erythrocyte maturation. Successful establishment of such a disease model has great implications for in-depth drug screenings for novel therapeutics that target the blood stage of the parasitic disease that were previously difficult to validate due to the limitations of currently existing models.
7

Genetics of the immune cell receptors TCRB and CCR5 in human disease

Buhler, Marc McWilliams January 2003 (has links)
Abstract Early in the evolution of the vertebrates it is thought that two genomic duplications occurred, providing a basis for the evolution in body plan and neural crest of very early vertebrates and substantive material for further evolution of various gene families such as those making up a number of components of the adaptive vertebrate immune system. While the bony fish possibly had another, genome duplications are not generally a feature of vertebrate evolution and indeed the appearance of an antigen-adaptive immune recognition system may have served to limit the size that various vertebrate genomes, including that of the human, can in fact achieve. This initial step in vertebrate immune evolution, the establishment of recognition of non-self against the unique set of 'self' epitopes for an individual, provided an immensely powerful weapon in immune function with the ability to tailor a defense against as-yet-unseen dangers at any time albeit with the pitfall of autoimmune disease. As the recognition sites of the antigen receptor molecules such as TcR are produced by clonal modification of the segments provided in the germline and are thus not in the genome itself, pathogens have not been able to hijack this one component of the immune system in the way so many other components have been put to use throughout evolution, nor do these components necessarily reveal themselves as associated with disease through genome screens. Importantly, overall immune function is determined not just by the potential repertoire of recognition receptors but also by the ability of immunocompetent cells to migrate in a tissue specific fashion through the use of various chemokines and their receptors. Typical of the hijacking of an immune system component by a pathogen is the use of a chemokine ligand gene in the viral ancestor to SIV and HIV, allowing for virus binding to immunocompetent cells as is seen in the use of the CCR5 chemokine receptor by macrophage-tropic HIV strains. This thesis describes the allele and genotype frequencies for several TcR beta-chain variable segment polymorphisms in a population of MS patients compared with controls before and after stratification for HLA-DR15, polymorphism in the Apo-1 / Fas promoter, the DRB1 Val86/Val86 genotype, CCR5-delta32 and the HLA-DRA promoter. The thesis continues with CCR5-delta32 genotyping in IDDM, MS and SLE cohorts and then examines the question of the population of origin of the delta-32 allele of the CCR5 receptor for chemokine. Here, a case / control comparison of 122 RR-MS patients with 96 normal individuals was made for allele and genotype frequencies and for haplotypes formed by pairs of TCRB markers. Further analysis was made after HLA-DR15 stratification. Linkage disequilibrium was found between pairs of alleles of bv8s1, bv10s1, bv15s1 and bv3s1 loci in both patients and controls. In the RR-MS cohort, an increase in the allele frequency of bv8s1*2 was seen (p = 0.03) and the haplotype bv8s1*2 / bv3s1*1 was increased (p = 0.006), and both were found to be statistically significant. In the DR15-positive group, association between MS and TCRB was seen with the bv8s1*2 allele (p = 0.05) and the bv8s1*2 / bv10s1 haplotypes (p = 0.048), while the haplotype associations seen among the DR15-negative patients included the bv3s1*1 allele (bv10s1*1 / bv3s1*1, p = 0.022; bv8s1*2 / bv3s1*1, p = 0.048). While no associations were found after stratification for SDF1-3'A, Apo-1 / Fas or DRB1 there were modest interactions between bv3s1, bv10s1 and bv15s1 and the HLA-DRA promoter. These results support the involvement of the TCRB region in MS susceptibility. The further study of autoimmune disease here includes genotype analysis of CCR5-delta32 in type 1 diabetes (IDDM) and SLE. CCR5 is the major co-receptor for viral entry used by macrophage-tropic HIV strains and protection from infection is seen in homozygotes for CCR5-delta32. In diabetes, infiltration of pancreatic tissue by autoreactive T-cells involves secretion of multiple cytokines and chemokine receptor expression. Variation in the chemokine receptor CCR5 may result in differences in inflammatory cell migration in response to relevant chemokines. Adolescents with type 1 diabetes were genotyped for CCR5-delta32 (n = 626). The allele frequency was compared with that of 253 non-diabetic adolescents and with that of 92 adults with SLE. A reduced allele frequency was seen in type 1 diabetes compared with controls (0.092 vs 0.123, p = 0.05). This difference was not seen for the cohort of patients with SLE (freq = 0.114). A reduction in the number of CCR5-delta32/delta32 homozygotes, who lack CCR5, in the type 1 diabetes cohort was also seen and while not statistically significant (2 observed compared to 5.25 expected; p = 0.12) is interesting. These results suggest a partial protection from type 1 diabetes for CCR5-delta32 homozygous individuals is possible and that CCR5 has a potential role in the pathogenesis of type 1 diabetes. Global surveys of the CCR5-delta32 allele have confirmed a single mutation event in a Northeastern European population as the source of this allele. Here, Australian Ashkenazi Jews (n = 807) were found to have a CCR5-delta32 allele frequency of 14.6% while Australian Sephardic Jews (n = 35) had a frequency of 5.7% and non-Jewish Australian controls (n = 311) had an allele frequency of 11.25%. Data on birthplace of grandparents showed a gradient with highest CCR5-delta32 frequencies from Eastern European Ashkenazim (~19.5% for those whose four grandparents come only from Russia, Poland, Hungary, Austria and Czechoslovakia; n = 197) which differs significantly from the frequency seen in Ashkenazi Jews from Western Europe (n = 101, p = 0.001). Homozygotes for CCR5-delta32 were genotyped with 3p21 region microsatellites. This has defined an ancestral haplotype on which the mutation first occurred and helped to date this event to between 40 and 50 generations ago or just over a thousand years ago. The population gradient, combined with the dating of the mutation by microsatellite allele frequencies, suggests an origin for the CCR5-delta32 allele in a population ancestral to the Ashkenazim. The distribution in non-Jewish populations in northern Europe has led others to postulate spread of the mutation by Vikings. It is hypothesised here that the link between the two populations could be the kingdom of Khazaria with subsequent admixture into both Swedish Vikings and Ashkenazi Jews. The basic driving force of evolution is through selection and the immune system has a role which, through the survival pressure exerted by viruses and other pathogens, has the potential to exert a great deal of selective force on the various components of this system. The effects of this pronounced selection on an immune system component can be seen for example in the increase of the CCR5-delta32 allele over the last thousand years to the current frequency. As mentioned, some immune system components are not affected by such straightforward selection. In the case of the TCRBV segments, effects on the immune repertoire can occur through MHC interaction at the point of thymic entry and in the effects of various superantigens, but the actual binding pockets that recognise antigen are themselves unable to be selected for (or against). The findings presented in this thesis provide support for the association of TCRBV gene segments with multiple sclerosis and also provide support for the further study of the role of the CCR5-delta32 allele in type 1 diabetes. Furthermore, data presented here suggests that the CCR5-delta32 allele had an origin in the Khazar Kingdom just over a thousand years ago, accounting for the allele frequencies in both the Ashkenazi Jews and in lands frequented by the Vikings. The definition of an extended ancestral haplotype for the CCR5-delta32 allele shows how the effect of selection of an allele of one gene can carry with it specific alleles of a large number of other genes as well.
8

NOVEL CONSTITUTIVELY ACTIVE POINT MUTATIONS IN THE NH2 DOMAIN OF CXCR2 CAPTURE THE RECEPTOR IN DIFFERENT ACTIVATION STATES

Park, Giljun 01 December 2010 (has links)
Chemokines are structurally and functionally related 8-10 kDa proteins defined by four conserved cysteine residues. They consist of a superfamily of proinflammatory mediators that promote the recruitment of various kinds of leukocytes and other cell types through binding to their respective chemokine receptor, a member of the GPCR family. Abnormal control of this system results in various diseases including tumorigenesis and cancer metastasis. Deregulation can occur when constitutively active mutant (CAM) chemokine receptors are locked in the “on” position. This can lead to cellular transformation/tumorigenesis. A viral CAM receptor, ORF74, that can cause tumors in humans, also has homology to human CXC chemokine receptor 2 (CXCR2), which is a G-protein-coupled receptor (GPCR) expressed on neutrophils, some monocytes, endothelial cells, and some epithelial cells. CXCR2 activation with ELR+ CXC chemokines induces leukocyte migration, trafficking, cellular differentiation, angiogenesis and cellular transformation. Using a high throughput yeast screen we identified a novel point mutation, D9H, in CXCR2, which leads to constitutive activation (CA). Generation of positively charged substitutions, D9K and D9R, and D143V as a positive control resulted in CA CXCR2 with differential levels of cellular transformation. To further investigate how D9 mutations lead to differential CA, we used inhibitors of known signal transduction pathways. Pertusiss toxin (PTX) sensitivity in foci formation assays demonstrated that D9R uses the Gi subunit like WTCXCR2 and D143V, while D9H and D9K do not. All CA receptors use the JAK pathway based on sensitivity to the inhibitor, AG490. Phosphorylation of PLC-beta 3 and sensitivity to the PLC-beta 3 inhibitor, U73122, implicates that mutant receptors such as D143V, D9H, D9K, and D9R utilize the Gq/11 subunit. Interestingly, D9R use both Gi and Gq/11 subunits. All of the CA receptors induced phosphorylation of the epidermal growth factor receptor (EGFR) indicating a transactivation between CXCR2 and EGFR. These data describe two novel and important findings. First, N-terminal CXCR2 controls activation and signaling using multiple G protein subunits to elicit downstream signaling. Second, our work supports the “functional selectivity” model for GPCR activation. That is, mimicking agonist activation, CA CXCR2 receptors have multiple conformational states that lead to differential activation.
9

The role of syndecan-1 in the resolution of chronic inflammatory responses

Angsana, Julianty 12 January 2015 (has links)
Inflammation is an integral part of the body defense mechanism that occurs in vascularized tissue in response to harmful stimuli that is perceived as being a threat to tissue homeostasis. It is a complex physiological host response that is designed to neutralize and eliminate harmful agents, initiate tissue healing, and orchestrate a return to tissue homeostasis. While inflammation is designed to be an acute event that resolves following the elimination of harmful stimuli and tissue healing, there are instances where inflammation fails to resolve and instead evolves into chronic inflammation. It is now well understood that ongoing inflammation can serve as the underlying cause of many chronic inflammatory diseases, including atherosclerosis. In fact, one of the most pressing issues that is currently faced in the field of inflammation research, one that has also become the focus of numerous ongoing investigations, is how to turn this excessive, unwarranted and undesirable inflammation response off. Once thought to be a passive and simple process, resolution is now understood to be an active and complex process that is orchestrated by various inflammatory mediators, signaling pathways and biophysical processes. The discovery of novel biosynthetic pathways that turn on the pro-resolution signals has lead to a surge in research aimed at taking a closer look at processes that can stimulate the resolution of inflammation. While major advances in the field have resulted in a better understanding of the proactive nature of resolution, many of the mechanisms involved are still unknown. To date, the repertoire of chemokine receptors that participate in macrophage clearance during resolution, for the most part, remain unidentified. Overall, there is a growing appreciation that the discovery of mechanisms involved in the resolution responses can lead to the development of novel therapeutic approaches to resolve many chronic inflammatory diseases. Syndecan-1 (Sdc-1), a member of a family of cell surface proteoglycans, has been previously shown to regulate events relevant to tissue repair and chronic injury responses. Macrophage Sdc-1 expression during inflammation has been reported to be protective in various inflammatory models. Given these observations, we hypothesize that Sdc-1 expression on macrophages is a critical component of an anti-inflammatory, pro resolution program necessary for the successful resolution of inflammatory response. In this dissertation, we report the presence of a unique population of macrophages expressing Sdc-1 that are present within the vascular wall of mice undergoing atherosclerosis. Consistent with previous publications, the presence of Sdc-1 expressing macrophages was found to limit atherosclerosis progression. In addition, Sdc-1 expression on macrophages was associated with anti-inflammatory M2 polarization state and high intrinsic motility. Macrophage Sdc-1 expression was also linked with efferocytosis and enhanced macrophage egress from the site of inflammation to the draining lymphatic network. Moreover, we discovered that the chemokine receptor CXCR4, which was found on Sdc-1 expressing macrophages, was also involved in macrophage egress during inflammation resolution. In summary, while the overall mechanism regulating resolution processes is still unknown, our work has managed to identify two components that are involved in the process: macrophage Sdc-1 and CXCR4. Collectively, these results reinforce the physiological significance of macrophage efferocytosis and macrophage motility as endogenous modulators of the inflammatory response.
10

Genetics of the immune cell receptors TCRB and CCR5 in human disease

Buhler, Marc McWilliams January 2003 (has links)
Abstract Early in the evolution of the vertebrates it is thought that two genomic duplications occurred, providing a basis for the evolution in body plan and neural crest of very early vertebrates and substantive material for further evolution of various gene families such as those making up a number of components of the adaptive vertebrate immune system. While the bony fish possibly had another, genome duplications are not generally a feature of vertebrate evolution and indeed the appearance of an antigen-adaptive immune recognition system may have served to limit the size that various vertebrate genomes, including that of the human, can in fact achieve. This initial step in vertebrate immune evolution, the establishment of recognition of non-self against the unique set of 'self' epitopes for an individual, provided an immensely powerful weapon in immune function with the ability to tailor a defense against as-yet-unseen dangers at any time albeit with the pitfall of autoimmune disease. As the recognition sites of the antigen receptor molecules such as TcR are produced by clonal modification of the segments provided in the germline and are thus not in the genome itself, pathogens have not been able to hijack this one component of the immune system in the way so many other components have been put to use throughout evolution, nor do these components necessarily reveal themselves as associated with disease through genome screens. Importantly, overall immune function is determined not just by the potential repertoire of recognition receptors but also by the ability of immunocompetent cells to migrate in a tissue specific fashion through the use of various chemokines and their receptors. Typical of the hijacking of an immune system component by a pathogen is the use of a chemokine ligand gene in the viral ancestor to SIV and HIV, allowing for virus binding to immunocompetent cells as is seen in the use of the CCR5 chemokine receptor by macrophage-tropic HIV strains. This thesis describes the allele and genotype frequencies for several TcR beta-chain variable segment polymorphisms in a population of MS patients compared with controls before and after stratification for HLA-DR15, polymorphism in the Apo-1 / Fas promoter, the DRB1 Val86/Val86 genotype, CCR5-delta32 and the HLA-DRA promoter. The thesis continues with CCR5-delta32 genotyping in IDDM, MS and SLE cohorts and then examines the question of the population of origin of the delta-32 allele of the CCR5 receptor for chemokine. Here, a case / control comparison of 122 RR-MS patients with 96 normal individuals was made for allele and genotype frequencies and for haplotypes formed by pairs of TCRB markers. Further analysis was made after HLA-DR15 stratification. Linkage disequilibrium was found between pairs of alleles of bv8s1, bv10s1, bv15s1 and bv3s1 loci in both patients and controls. In the RR-MS cohort, an increase in the allele frequency of bv8s1*2 was seen (p = 0.03) and the haplotype bv8s1*2 / bv3s1*1 was increased (p = 0.006), and both were found to be statistically significant. In the DR15-positive group, association between MS and TCRB was seen with the bv8s1*2 allele (p = 0.05) and the bv8s1*2 / bv10s1 haplotypes (p = 0.048), while the haplotype associations seen among the DR15-negative patients included the bv3s1*1 allele (bv10s1*1 / bv3s1*1, p = 0.022; bv8s1*2 / bv3s1*1, p = 0.048). While no associations were found after stratification for SDF1-3'A, Apo-1 / Fas or DRB1 there were modest interactions between bv3s1, bv10s1 and bv15s1 and the HLA-DRA promoter. These results support the involvement of the TCRB region in MS susceptibility. The further study of autoimmune disease here includes genotype analysis of CCR5-delta32 in type 1 diabetes (IDDM) and SLE. CCR5 is the major co-receptor for viral entry used by macrophage-tropic HIV strains and protection from infection is seen in homozygotes for CCR5-delta32. In diabetes, infiltration of pancreatic tissue by autoreactive T-cells involves secretion of multiple cytokines and chemokine receptor expression. Variation in the chemokine receptor CCR5 may result in differences in inflammatory cell migration in response to relevant chemokines. Adolescents with type 1 diabetes were genotyped for CCR5-delta32 (n = 626). The allele frequency was compared with that of 253 non-diabetic adolescents and with that of 92 adults with SLE. A reduced allele frequency was seen in type 1 diabetes compared with controls (0.092 vs 0.123, p = 0.05). This difference was not seen for the cohort of patients with SLE (freq = 0.114). A reduction in the number of CCR5-delta32/delta32 homozygotes, who lack CCR5, in the type 1 diabetes cohort was also seen and while not statistically significant (2 observed compared to 5.25 expected; p = 0.12) is interesting. These results suggest a partial protection from type 1 diabetes for CCR5-delta32 homozygous individuals is possible and that CCR5 has a potential role in the pathogenesis of type 1 diabetes. Global surveys of the CCR5-delta32 allele have confirmed a single mutation event in a Northeastern European population as the source of this allele. Here, Australian Ashkenazi Jews (n = 807) were found to have a CCR5-delta32 allele frequency of 14.6% while Australian Sephardic Jews (n = 35) had a frequency of 5.7% and non-Jewish Australian controls (n = 311) had an allele frequency of 11.25%. Data on birthplace of grandparents showed a gradient with highest CCR5-delta32 frequencies from Eastern European Ashkenazim (~19.5% for those whose four grandparents come only from Russia, Poland, Hungary, Austria and Czechoslovakia; n = 197) which differs significantly from the frequency seen in Ashkenazi Jews from Western Europe (n = 101, p = 0.001). Homozygotes for CCR5-delta32 were genotyped with 3p21 region microsatellites. This has defined an ancestral haplotype on which the mutation first occurred and helped to date this event to between 40 and 50 generations ago or just over a thousand years ago. The population gradient, combined with the dating of the mutation by microsatellite allele frequencies, suggests an origin for the CCR5-delta32 allele in a population ancestral to the Ashkenazim. The distribution in non-Jewish populations in northern Europe has led others to postulate spread of the mutation by Vikings. It is hypothesised here that the link between the two populations could be the kingdom of Khazaria with subsequent admixture into both Swedish Vikings and Ashkenazi Jews. The basic driving force of evolution is through selection and the immune system has a role which, through the survival pressure exerted by viruses and other pathogens, has the potential to exert a great deal of selective force on the various components of this system. The effects of this pronounced selection on an immune system component can be seen for example in the increase of the CCR5-delta32 allele over the last thousand years to the current frequency. As mentioned, some immune system components are not affected by such straightforward selection. In the case of the TCRBV segments, effects on the immune repertoire can occur through MHC interaction at the point of thymic entry and in the effects of various superantigens, but the actual binding pockets that recognise antigen are themselves unable to be selected for (or against). The findings presented in this thesis provide support for the association of TCRBV gene segments with multiple sclerosis and also provide support for the further study of the role of the CCR5-delta32 allele in type 1 diabetes. Furthermore, data presented here suggests that the CCR5-delta32 allele had an origin in the Khazar Kingdom just over a thousand years ago, accounting for the allele frequencies in both the Ashkenazi Jews and in lands frequented by the Vikings. The definition of an extended ancestral haplotype for the CCR5-delta32 allele shows how the effect of selection of an allele of one gene can carry with it specific alleles of a large number of other genes as well.

Page generated in 0.0667 seconds