Spelling suggestions: "subject:"chimie bioinspirée"" "subject:"chimie bioinspirés""
1 |
Nouveaux catalyseurs inspirés du site actif des hydrogénases NiFe : électro-production d'hydrogène et mécanisme catalytiqueCanaguier, Sigolène 24 September 2009 (has links) (PDF)
Les hydrogénases NiFe sont des métalloenzymes capables de catalyser efficacement la production et l'oxydation du dihydrogène à des potentiels proches de l'équilibre thermodynamique. Leur site actif est constitué d'un complexe hétérobimétallique comportant un atome de nickel en environnement soufré relié par deux ponts thiolates à un motif organométallique fer-cyano-carbonyle. Afin d'obtenir des catalyseurs de production d'hydrogène alternatifs au platine actuellement utilisé dans les électrolyseurs et pour approfondir la compréhension du mécanisme catalytique de l'enzyme, nous avons élaboré plusieurs modèles de faible poids moléculaire inspirés de la structure du site actif de ces enzymes : il s'agit de complexes dinucléaires possédant le motif papillon Ni(µ-S2)M (M= Ru, Mn et Fe). Les propriétés électrocatalytiques de ces composés ont été évaluées : ils s'avèrent tous actifs en production d'hydrogène. La modification de la densité électronique et de l'encombrement stérique au niveau du centre ruthénium des complexes Ni-Ru synthétisés a permis d'optimiser les performances de ces catalyseurs en termes de stabilité, de vitesse de catalyse et de surtension. Une étude mécanistique du cycle catalytique des complexes Ni-Ru a également été menée : en combinant mesures électrochimiques et calculs théoriques (DFT), elle a permis de proposer un intermédiaire catalytique hydrure de nature pontante entre les deux métaux Ni et Ru. Enfin, le complexe dinucléaire Ni-Fe synthétisé constitue l'un des premiers modèles à la fois structural et fonctionnel des hydrogénases NiFe.
|
2 |
MODELES STRUCTURAUX ET FONTIONNELS DU SITE ACTIF DES HYDROGENASES [NIFE] : DE NOUVEAUX CATALYSEURS BIO-INSPIRES POUR LA PRODUCTION D'HYDROGENEOudart, Yohan 28 September 2006 (has links) (PDF)
Les hydrogénases sont des protéines capables de catalyser efficacement la production et l'oxydation du dihydrogène à des potentiels proches de l'équilibre thermodynamique. Le site actif des hydrogénases [NiFe] possède un motif fer-cyano-carbonyle ainsi qu'un atome de nickel en environnement soufré. L'originalité de la structure de ce site actif ainsi que les applications potentielles dans le cadre d'une économie de l'hydrogène rendent la synthèse de modèles structuraux et fonctionnels très importante. Dans cette perspective, nous avons préparé des modèles mononucléaires de ruthénium et des complexes nickel-ruthénium, inspirés de ce site actif. Les composés décrits dans ces travaux ont été bien caractérisés et leur activité en réduction des protons a été testée. La plupart se sont montrés capables de catalyser cette réaction même si les potentiels d'électrocatalyse restent trop négatifs par rapport à celui du platine. Il s'agit des premiers modèles fonctionnels catalytiques des hydrogénases [NiFe]. Les différents paramètres étudiés ont permis de mettre en évidence l'importance de la richesse en électrons des composés et plus particulièrement du nickel afin d'améliorer les potentiels d'électrocatalyse. D'autre part, la stabilité de l'activité sur plusieurs heures est assez bonne. L'environnement du ruthénium semble important pour cette stabilité.Les résultats les plus importants de ces travaux sont que les deux métaux ont un effet synergique en réduction des protons et que l'étape limitante du cycle catalytique est une protonation. Nous avons aussi illustré l'importance d'une base adjacente au métal qui améliore le potentiel d'électrocatalyse.
|
3 |
Approche électrochimique de l'activation réductrice du dioxygène à l'aide d'un complexe de fer(II) non hémique / Electrochemical Approach of the Reductive Activation of O2 by a Non heme Fe(II) complexBohn, Antoine 07 December 2018 (has links)
Les cytochromes P450 sont des enzymes mononucléaires de fer qui catalysent l’oxydation de liaisons C-H en utilisant le dioxygène de l’air. L’activation de O2 nécessite sa réduction partielle par l'apport de deux protons et deux électrons. Ces derniers sont fournis par le réducteur naturel NADPH par l'intermédiaire d'une flavoprotéine qui permet de convertir l’adduit fer(II)-O2 en un intermédiaire de type fer(III)-peroxo dont les protonations successives permettent la rupture hétérolytique de la liaison O—O et l’obtention d’un intermédiaire de type fer-oxo responsable de l’oxydation du substrat.1 Ce projet s’inscrit dans le cadre de la chimie bio-inspirée, il a pour objectif de développer des catalyseurs de fer non-hémiques afin de réaliser l’oxydation de petites molécules organiques en utilisant le dioxygène de l’air. L’activation du dioxygène est assurée par le biais d’une électrode qui sert de source d’électrons mais également de sonde mécanistique. Pour comprendre le mécanisme de l’activation du dioxygène il est nécessaire (i) de générer les intermédiaires réactionnels oxydants (fer-oxo, fer-(hydro)peroxo) par le biais d’oxydants chimiques comme le PhIO et H2O2 puis (ii) de les caractériser par spectroscopie et électrochimie à basse température. Enfin (iii) l’étude expérimentale par voltampérométrie cyclique de la réaction du complexe de Fe(II) en présence de dioxygène couplée à des simulations de voltampérogrammes de cette même réaction (à l’aide de données thermodynamiques et cinétiques obtenues en (ii)) permettent ainsi de valider le mécanisme de l’activation réductrice du dioxygène de ce système. Ce travail a démontré que les complexes de FeII avec des ligands amines/pyridine peuvent activer le dioxygène à la surface d’une électrode en suivant un mécanisme proche de celui du cytochrome P450. A présent, la difficulté principale est de s’affranchir de la réduction prématurée des intermédiaires lorsqu’ils sont générés à l’électrode. En se basant sur ces résultats, l’essentiel du travail est à présent ciblé sur la compréhension des différents paramètres (première sphère de coordination, conditions expérimentales, …) qui peuvent modifier la stabilité des intermédiaires et donc l’efficacité de la catalyse. / Cytochrome P450 is a mononuclear iron enzyme, which catalyzes the oxidation of robust C-H bonds using O2. Activation of O2 is achieved at the Fe(II) center and requires an electron transfer to convert the iron(II)-dioxygen adduct into an iron(III)peroxo intermediate. After protonation, this latter may directly oxidize substrates or evolves to yield a powerful high valent iron-oxo moiety. In such natural systems, the necessary electrons are provided by a co-substrate NAD(P)H and are conveyed through a reductase.1The aim of this project is to develop non-heme iron(II) complexes as catalysts for the oxidation of small organic molecules by O2. Our objective is to use an electrode to deliver the electrons while providing mechanistic information at the same time thanks to a combined experimental/simulation approach using cyclic voltammetry. This work has shown that simple Fe(II) complexes bearing amine/pyridine ligands can activate O2 at an electrode surface following a mechanism that is reminiscent of the one of P450. However, the main scientific lock is to avoid the fast reduction of the reaction intermediates when they are generated at the electrode. We are currently studying how alterations of the first coordination sphere of the metal center and experimental conditions modulate the formation and the stability of these intermediates and thus, the efficiency of the catalysts.
|
4 |
Synthèse et évaluation d'architectures polyaromatiques pour l’application au transport transmembranaire d'ions. / Synthesis and evaluation of polyaromatic architectures for ion transmembrane transport applications.Boufroura, Hamza 14 February 2017 (has links)
Les travaux présentés dans ce manuscrit de thèse s’articulent autour de la synthèse de nouvelles architectures moléculaires tridimensionnelles et de l’évaluation de ces architectures en tant que canaux ioniques synthétiques capables de promouvoir le transport transmembranaire d’ions. La première partie concerne la mise au point d’une voie d’accès à ces édifices ayant comme plateforme centrale une brique naphtothiophène, aromatique ou partiellement hydrogénée, ainsi que l’étude prospective de la conversion de ces architectures en plateforme hélicoïdale. Les propriétés de ces édifices sont étudiées à l’état solide et par voie de calculs théoriques, permettant de mettre en avant des informations quant à la topologie globale adoptée ainsi que la compréhension de certaines réactivités observées. Une seconde partie est dédiée à la fonctionnalisation de ces édifices en molécules présentant des propriétés amphiphiles puis à l’étude de la capacité de ces dernières à s’insérer dans une bicouche lipidiques modèle afin de promouvoir le transport d’ions à travers la membrane via la formation de canaux ioniques dits synthétiques. En outre, des études alliant des analyses de spectrométrie de masse et des calculs théoriques sont présentés afin de comprendre les interactions intervenant dans le processus de transport d’ions à travers la membrane lipidique. / The work presented in this manuscript is dealing with the synthesis of new three-dimensional molecular architectures and their evaluation as synthetic ion channels capable of promoting ion transmembrane transport. The first part aims at developing a straightforward approach to the synthesis of novel architectures based on a naphthothiophene platform, aromatic or partially hydrogenated, as well as the development of a strategy the convert 9-arylnaphthothiophene architectures into helical platforms. The properties of these molecules were studied in the solid state and were completed by theoretical calculations to highlight global topologies adopted. Theoretical calculations allowed us to understanding some reactivities observed. A second part is dedicated firstly to the functionalisation of these molecular architectures into amphiphilic molecules and secondly to study their abilities to insert themselves into a model bilayer lipid membrane by forming channels. Besides, in order to gain a better understanding of the interactions in play in the process, mass spectrometry analysis combined to theoretical calculations were set up.
|
Page generated in 0.0735 seconds