• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 15
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 62
  • 21
  • 13
  • 12
  • 10
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Paradox Basin source rock, southeastern Utah : organic geochemical characterization of Gothic and Chimney Rock units, Ismay and Desert Creek zones, within a sequence stratigraphic framework

Tischler, Keith Louris 17 October 2012 (has links)
The Chimney Rock and Gothic units of the Pennsylvanian Paradox Formation have long been considered source rocks for the rich hydrocarbon fields of southeastern Utah. Fundamental questions about these units include: source and nature of the organic material, source rock character, and position of the source rocks in the existing sequence stratigraphic framework. The Chimney Rock and Gothic, historically referred to as shales, are composed of calcareous mudstone, dolomudstone, and calcareous sandstone. High total organic carbon (TOC) values are more closely linked to sequence stratigraphic position than lithology. In the Gothic, TOC values decrease upwards. Terrestrial maceral content increases upwards in both the Gothic and the Chimney Rock as determined through point-count and qualitative observation. Pyrolysis indicates that greater than anticipated terrestrial influence is present and is consistent for all wells. No distinct difference in geochemical character exists between the two units. Sequence stratigraphic boundaries appear to be as good as, or better, than traditional lithostratigraphic boundaries for determining high TOC occurrence and source rock location. Within repetitive major sea level transgressions the organic matter that fed the basin evolved from a marine-dominated signature to a terrestrial-dominated signature. / text
42

Chaminé solar como alternativa para incrementar a ventilação natural em espaços internos / Solar Chimney as alternative to increase the natural ventilation in indoor spaces

Cavalcanti, Fernando Antonio de Melo Sá 02 August 2010 (has links)
Made available in DSpace on 2016-06-02T20:09:12Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-08-02 / Financiadora de Estudos e Projetos / This work aims to investigate the influence of solar chimneys in the natural ventilation in buildings located in Brazil. Considering that Brazil is a tropical country and has a great potential for the harnessing of solar radiation, it is intended to verify the hypothesis that the use of this device may increase air movement in indoor spaces contributing to promote thermal comfort for users of these environments. The methodology used to verify this hypothesis was based on comparing the performance of two construction systems: a conventional chimney and a solar chimney. The two models have the same height and dimensions for the air inlet and outlet. This comparison was performed by computer simulations using EnergyPlus software, for eight Brazilian cities located in each one of the bioclimatic zones of Brazil, during winter and summer. The investigated device showed satisfactory performance, increasing natural ventilation during the day in all cities simulated, even in winter, when natural ventilation may not be desired in some climates. The data were presented to facilitate the understanding of professionals in the Construction Industry in general, contributing to establish a theoretical framework on the subject, and projective guidelines for more efficient buildings from the standpoint of energy. It is also intended to contribute to the potential of this device is investigated in several Brazilian regions, always trying to adapt the buildings to the climate of where it will be built. / Este trabalho tem como finalidade investigar a influência que o uso de chaminés solares possuem na ventilação natural em edifícios localizados no Brasil. Tendo em vista que o Brasil é um pais tropical e possui um grande potencial para aproveitamento da Radiação Solar, pretende-se verificar a hipótese de que a utilização deste dispositivo pode incrementar a ação dos ventos em espaços internos de modo a contribuir na promoção do conforto para os usuários destes ambientes. A metodologia utilizada para verificar esta hipótese foi baseada na comparação entre o desempenho de dois sistemas construtivos: um dotado de chaminé convencional e outro com chaminé solar, sendo os dois modelos com a mesma altura e dimensões para aberturas de entrada e saída do ar. Esta comparação foi realizada a partir de simulações computacionais utilizando o software EnergyPlus, para 8 cidades brasileiras, representativas de cada uma das zonas bioclimáticas do pais, nos períodos de inverno e verão. O dispositivo investigado apresentou desempenho satisfatório, aumentando a ventilação natural no período diurno em todas as cidades simuladas, inclusive no período de inverno, quando a ventilação natural pode não ser desejável em alguns climas. Os dados foram apresentados de forma a facilitar o entendimento dos profissionais da Construção Civil em geral, visando contribuir para estabelecer um referencial teórico sobre o assunto, alem de diretrizes projetuais para edifícios mais eficientes do ponto de vista energético. Pretende-se também contribuir para que o potencial deste dispositivo seja investigado nas mais diversas regiões brasileiras, buscando adaptar sempre as edificações ao clima do sitio onde serão construídas.
43

An?lise da indu??o de fluxo de ar por convec??o livre em chamin? solar

Oliveira, Hugo Sergio Medeiros de 30 November 2012 (has links)
Made available in DSpace on 2014-12-17T14:58:19Z (GMT). No. of bitstreams: 1 HugoSMO_DISSERT.pdf: 2443429 bytes, checksum: f4aa985ea6a69a950cd97df70afeffe5 (MD5) Previous issue date: 2012-11-30 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Experiments were performed to study the effect of surface properties of a vertical channel heated by a source of thermal radiation to induce air flow through convection. Two channels (solar chimney prototype) were built with glass plates, forming a structure of truncated pyramidal geometry. We considered two surface finishes: transparent and opaque. Each stack was mounted on a base of thermal energy absorber with a central opening for passage of air, and subjected to heating by a radiant source comprises a bank of incandescent bulbs and were performed field tests. Thermocouples were fixed on the bases and on the walls of chimneys and then connected to a data acquisition system in computer. The air flow within the chimney, the speed and temperature were measured using a hot wire anemometer. Five experiments were performed for each stack in which convective flows were recorded with values ranging from 17 m? / h and 22 m? / h and air flow velocities ranging from 0.38 m / s and 0.56 m / s for the laboratory tests and air velocities between 0.6 m/s and 1.1m/s and convective airflows between 650 m?/h and 1150 m?/h for the field tests. The test data were compared to those obtained by semi-empirical equations, which are valid for air flow induced into channels and simulated data from 1st Thermodynamics equation. It was found that the chimney with transparent walls induced more intense convective flows than the chimney with matte finish. Based on the results obtained can be proposed for the implementation of prototype to exhaust fumes, mists, gases, vapors, mists and dusts in industrial environments, to help promote ventilation and air renewal in built environments and for drying materials, fruits and seeds / Estudou-se o efeito do acabamento da superf?cie de um canal vertical aquecido por uma fonte de radia??o t?rmica na indu??o de fluxo de ar por convec??o livre. Dois canais (prot?tipos de chamin? solar) foram constru?dos com placas de vidro, compondo uma estrutura de geometria tronco-piramidal. Consideraram-se dois acabamentos de superf?cie: transparente e opaco. Cada chamin? foi montada sobre uma base absorvedora de energia t?rmica, com uma abertura central para passagem de ar, e submetidas a aquecimento por meio de uma fonte radiante composta por um banco de l?mpadas incandescentes e foram feitos ensaios em campo. Termopares foram fixados nas bases absorvedoras e nas paredes das chamin?s e, em seguida, conectados a um sistema de aquisi??o de dados por computador. O fluxo de ar no interior da chamin?, sua velocidade e temperatura foram medidos utilizando-se um anem?metro de fio quente. Realizaram-se cinco ensaios para cada chamin?, nos quais foram registrados fluxos convectivos com valores variando entre 17 m?/h e 22 m?/h e velocidades de escoamento de ar variando entre 0,38 m/s e 0,56 m/s para os ensaios em laborat?rio e velocidades entre 0,6 m/s e 1,1 m/s e fluxos de ar variando entre 650 m?/h e 1150 m?/h para os ensaios em campo. Os dados dos ensaios foram comparados ?queles obtidos por meio de equa??es semi-emp?ricas, v?lidas para escoamento de ar induzido em canais e com dados obtidos atrav?s da 1? lei da Termodin?mica. Constatou-se que a chamin? com paredes transparentes induziu fluxos convectivos mais intensos que a chamin? com acabamento opaco. Com base nos resultados obtidos pode-se propor a aplica??o do prot?tipo para exaust?o de fumos, n?voas, gases, vapores, poeiras e neblinas em ambientes industriais, para auxiliar na promo??o de ventila??o e renova??o de ar em ambientes constru?dos e para secagem de materiais, frutas e sementes
44

Perla Ústí nad Orlicí / Pearl Ústí nad Orlicí

Hyťhová, Martina January 2017 (has links)
Main task of the diploma project is design of conversion strategy and revitalization of former textile factory PERLA 01 in Ústí nad Orlicí. The construction program consist conversion of existing building to cafébar, assembly hall, office space, shoping hall, bistro and craftsman´s workrooms. New building is infocentrum, gallery, textilmania, entrance hall of assembly hall, cycling shop, library reserve space and club centrum. The project design new square and public space.
45

Ocelová rozhledna / Steel lookout tower

Kábrt, Michal January 2018 (has links)
The aim of the diploma thesis was to make a structural design of steel-load-carrying structure of steel lookout tower, in the grounds of domestic brewery in Humpolec. Lookout tower will be part of newly built centre for customers of the brewery. The layout and shape of the load-carrying structure of steel lookout tower follow the brewery chimney with height of 32.7 m with circular ground plan and outside diameter of 3.5 m in the heel and 2.3 m at the top. The chimney is independent of the construction of the lookout tower. The ground plan and dimensions of the lookout tower were considered taking into account the required spacing of the structure from adjacent buildings and ensuring sufficient dimensions for the required passage between the future lookout tower and the existing building of the boiler room. RFEM was used for calculation internal forces and assessment on individual structural elements, according to the valid Eurocodes.
46

Statické řešení betonového komínu / Static solution of concrete chimney

Kašparů, Jakub January 2013 (has links)
The goal of this Master´s thesis is a review of a reinforced concrete chimney´s stack and a foundation design based on a combination of M+N load. Two bar models (by ČSN and EN) and one shall model were created to analyze internal forces. The fine element software SCIA ENGINEERING was used to create the models. The loads taken into consideration - for analysis include self weight, lining, temperature, wind, and Karman vortex. The stack was horizontally divided by several cuts which were investigated. The stack and foundation were designed by an algorithm created in the program MS EXCEL. The piles were designed in the program GEO 5. Drawings include - drawings of shapes and drawings of the reinforcement of specifics part of chimney.
47

Statické posouzení stávajícího železobetonového komínu / Structural assessment of the reinforced concrete chimney

Teplý, Jakub January 2017 (has links)
The aim of this thesis is assessment of existing condition reinforced concrete factory chimney, who has undergone structural and technical survey, under which was found many failures caused of horizontally tension - significant vertical cracks in the chimney stack. The object of this work will also make appropriate proposals rehabilitation of concrete stack by design prestressed cables monostrand in horizontal direction, grouting open cracks and reprofiling surface of chimney stack.
48

Budovy pro vzdělávání - energie a vnitřní prostředí / Buildings for education - energy and indoor environment

Čišecký, Ladislav January 2017 (has links)
Diploma thesis deals with evaluation of indoor environment of a school complex in atypical Himalayan alpine environment which is totally dependent on energy originating from renewable sources. Structural design of buildings allows maximum utilization of solar energy which is the only one actually available source of energy in this area. The buildings are de-scribed in detail, as well as measurement conducted in buildings during the last year. The out-comes of measurements are compared with desired values. The thesis is also focused on math-ematical simulations by using BSim software. The output of a building energy simulations is an energy use prediction and design of appropriate measures to improve the current situation.
49

Optimization and control of a large-scale solar chimney power plant

Pretorius, Johannes Petrus 03 1900 (has links)
Thesis (PhD (Mechanical and Mechatronic Engineering))-- University of Stellenbosch, 2007. / ENGLISH ABSTRACT: The dissertation builds on previous research (Pretorius, 2004) and investigates the optimization and control of a large-scale solar chimney power plant. Performance results are based on a reference location near Sishen in South Africa and a so-called reference solar chimney power plant, with a 5000 m collector diameter and a 1000 m high, 210 m diameter chimney. The numerical simulation model is refined and used to perform a sensitivity analysis on the most prominent operating and technical plant specifications. Thermo-economically optimal plant configurations are established from simulation results and calculations according to an approximate plant cost model. The effects of ambient wind, temperature lapse rates and nocturnal temperature inversions on plant performance are examined. Various new technologies are investigated for the purpose of controlling plant output according to specific demand patterns. The incorporation of vegetation under the collector roof of the plant and the influence thereof on plant performance is also explored. Results indicate that, through the modification of the collector roof reflectance, collector roof emissivity, ground surface absorptivity or ground surface emissivity, major improvements on plant performance are possible. Introducing thermal insulation or double glazing of the collector roof also facilitates substantial enhancements on plant yield. Simulations predict a notable sensitivity to the ground surface absorptivity value, while variable atmospheric temperature lapse rates and windy ambient conditions may impair plant performance significantly. Furthermore, sand is found to be unsuitable as plant ground type and thermoeconomically optimal solar chimney plant dimensions are determined to be generally larger than plant dimensions employed in previous studies. Good dynamic control of solar chimney power output is established, suggesting that a solar chimney power plant can be implemented as a base or peak load electricity generating facility. Lastly, results predict that vegetation, when provided with sufficient water, will be able to survive under the collector roof but the inclusion of vegetation will however cause major reductions in plant performance. / AFRIKAANSE OPSOMMING: Die proefskrif bou op vorige navorsing (Pretorius, 2004) en ondersoek die optimering en beheer van 'n grootskaalse sonskoorsteen-kragstasie. Uitsetresultate word baseer op 'n verwysingsligging naby Sishen in Suid-Afrika en 'n sogenaamde verwysingskragstasie, met 'n kollektor deursnee van 5000 m en 'n 1000 m hoë, 210 m deursnee skoorsteen. Die numeriese rekenaarmodel is verbeter en gebruik vir die uitvoering van 'n sensitiwiteits-analise op die belangrikste bedryfs- en tegniese kragstasie spesifikasies. Termo-ekonomiese optimale aanlegkonfigurasies is bepaal volgens die uitsetresultate van die rekenaarmodel en benaderde aanleg-kosteberekeninge volgens 'n eenvoudige kostemodel. Die invloed van wind, atmosferiese temperatuur gradiënte en nagtelike temperatuur inversies op kragstasie uitset word beskou. Verskeie nuwe tegnologië word ondersoek met die doel om aanleg uitset te kan beheer volgens spesifieke elektrisiteit aanvraagspatrone. Die inkorporasie van plantegroei onder die kollektordak, en die invloed daarvan op kragstasie uitset, word ook beskou. Bevindings dui aan dat, deur die wysiging van die kollektordak refleksie, kollektordak emissiwiteit, grondoppervlak absorptiwiteit of grondoppervlak emissiwiteit, groot verbeterings op aanleg uitset moontlik is. Die implementering van termiese isolasie of 'n dubbelglaslaag vir die kollektordak veroorsaak ook 'n beduidende verheffing in kragstasie uitset. Simulasies voorspel 'n merkbare sensitiwiteit teenoor die grondoppervlak absorptiwiteitswaarde, terwyl veranderlike atmosferiese temperatuur daaltempos en winderige omgewingstoestande aanleg uitset beduidend mag belemmer. Verder is bevind dat sand ongeskik is as aanleg grond tipe en dat termo-ekonomiese optimale sonskoorsteen-kragstasie dimensies in die algemeen groter is as die aanvaarde aanlegdimensies van vorige studies. Goeie dinamiese beheer van sonskoorsteen-kragstasie uitset is bevestig, wat suggereer dat die sonskoorsteenkragstasie as 'n basis of pieklas elektrisiteitopwekkings-aanleg ingespan kan word. Ten laaste voorspel resultate dat plantegroei, mits dit voorsien word van genoegsame water, sal kan oorleef onder die kollektordak maar dat die inkorporasie van plantegroei die aanleg uitset beduidend sal benadeel. / Sponsored by the Centre for Renewable and Sustainable Energy Studies
50

Evaluation of the Nordland Group overburden as an effective seal for the Sleipner CO2 storage site (offshore Norway) using analytical and stochastic modelling techniques

Nicoll, Grant Douglas January 2012 (has links)
Saline aquifers and depleted hydrocarbon fields situated beneath the North Sea are currently being proposed as storage repositories for anthropogenic CO2 captured from point source emitters in the UK and mainland Europe. Two experimental sites are already operating successfully offshore Norway: Sleipner since 1996 and Snøhvit since 2007, collectively storing several million tonnes of CO2/year in the sub-surface. Despite the apparent success of these current projects, one of the major public and scientific concerns is the ability of storage sites to retain CO2 on the millennial timescales required for CO2 plume stabilisation and dissolution. Some areas of the North Sea are also known to contain palaeo-gas seepage pathways within overburden sediments that overlie deeper hydrocarbon reservoirs (e.g. Witch Ground Graben). These areas either need to be avoided for CO2 storage or rigorously assessed in terms of leakage risk. Since the Sleipner storage site lies within such a province, this thesis delivers a detailed evaluation of the Nordland Group overburden and a critical assessment of its long-term sealing capability for CO2. From interpretation and detailed mapping of a baseline 3D seismic dataset (acquired before CO2 injection operations commenced in 1996), we have identified numerous palaeo-migration pathways and high-amplitude seismic anomalies within the Nordland Group overburden sediments deposited above the Sleipner CO2 storage site. We attributed these features to thermogenic or biogenic gas migration, accumulation and bio-degradation over geological time. We also mapped a complex network of sand-filled, glacial channels and tunnel valleys distributed within a few hundred metres below seabed and highlighted their significance as potential fluid migration networks and/or secondary storage containment for leaking CO2. Of further significance, we confirmed that these overburden features also create spatial density variations that impact on the accuracy of seismic time-depth conversions, resulting in the probability of topographic distortions being propagated into seismic interpretations and models. To the best of our knowledge no such detailed mapping of the Nordland Group overburden at Sleipner has been undertaken previously. To determine whether the top layer of the CO2 plume at Sleipner might encounter these relict pathways as it ascends and migrates laterally beneath the caprock, we evaluated the critical column heights required for a CO2 accumulation to enter such a pathway under a range of storage conditions for a CH4/CO2/brine system; assuming that these pathways currently contain methane gas. Risking scenarios were based on a range of phase saturation, pressure, temperature, density, viscosity, interfacial tension and wettability conditions likely to be encountered at depths commensurate with the caprock at Sleipner. We concluded that given certain conditions at the caprock, CO2 could leak more easily into palaeo-migration pathways than CH4 (i.e. at lower entry pressures and therefore smaller column heights), assuming that brine densities and, most importantly, pore radii have not changed significantly over geological time (i.e. no cementation or dissolution has taken place). To further understand the dynamic significance of these palaeo-migration pathways, channels and tunnel valleys, including their ability to form inter-connected leakage/migration networks, we constructed a series of high-resolution 3D models of the Sleipner storage site and overburden, then used stochastic basin modelling and simulation techniques to investigate the processes involved during the introduction of CO2 into the storage site over a prolonged time period. Models were populated with geological, stratigraphic and structural information derived from our seismic interpretation. Flow simulations were calibrated to published data and matched to the present-day plume distribution. The absence of observational reservoir pressure and temperature data from Sleipner introduces significant uncertainty to model outcomes with respect to CO2 density and column height estimates and to surmount this difficulty we constrained the caprock temperature to CO2 density estimates obtained from the most recent gravity data observations at Sleipner. We concluded that the overburden heterogeneity is significant and palaeo-migration pathways, highpermeability channels and tunnel valleys at Sleipner may become potential migration pathways for CO2 as the plume continues to spread laterally over the coming decade, but the possible storage response is difficult to quantify given the absence of sufficient overburden rock property information and accurate pressure and temperature data for the storage site. The overall conclusion from this work is that insufficient information was collected within the Sleipner area prior to storage site development and too many significant studies which should have been performed as a pre-requisite (e.g. obtaining a caprock sample for laboratory testing of potential seal capacity), were actually performed some years after CO2 injection operations had already commenced. The pressure and temperature conditions at the caprock depth for the Sleipner storage site are also marginal in terms of maintaining CO2 above critical point conditions in dense phase and thus maximising storage efficiency. Most significantly, no rigorous overburden mapping and risking was performed for Sleipner (such as the work described in this thesis), thus the fact that no leakage has been detected at Sleipner is more due to good fortune than following best practices. Hopefully, our work has highlighted these key deficiencies so that future CO2 storage site feasibility and development studies will be performed more diligently.

Page generated in 0.0352 seconds