Spelling suggestions: "subject:"chondral defects"" "subject:"chondrale defects""
1 |
DEVELOPMENT AND VALIDATION OF LARGE-SIZED ENGINEERED CARTILAGE CONSTRUCTS IN FULL –THICKNESS CHONDRAL DEFECTS IN A RABBIT MODELBRENNER, JILLIAN 31 January 2012 (has links)
Long-term applicability of current surgical interventions for the repair of articular cartilage is jeopardized by the formation of mechanically inferior repair tissue. Cartilage tissue engineering offers the possibility of developing functional repair tissue, similar to that of native cartilage, enabling long-lasting repair of cartilage defects. Current techniques, however, rely on the need for a large number of cells, requiring substantial harvesting of donor tissue or a separate cell expansion phase. As routine cell expansion methods tend to elicit negative effects on cell function, the following study describes an approach to generate large-sized engineered cartilage constructs (≥ 3 cm2) directly from a small number of immature rabbit chondrocytes (approximately 20,000), without the use of a scaffold. After characterizing the hyaline-like engineered constructs, the in vivo repair capacity was assessed in a chondral defect model in the patellar groove of rabbits.
In vitro remodeling of the constructs developed in the bioreactor occurred as early as 3 weeks, with the histological staining exhibiting zonal differences throughout the depth of the tissue. With culturing parameters optimized (3 weeks growth under 15 mM NaHCO3), constructs were grown and implanted into critical-sized 4 mm chondral defects. Assessed after 1, 3 and 6 months (n=6), implants were scored macroscopically to evaluate integration and survival of the implants. Out of 18 rabbits, 16 received normal or nearly normal over-all repair assessment. Histological and immunohistochemical evaluation showed good integration with surrounding cartilage and underlying subchondral bone. Architectural remodeling of the constructs was present at each time point, with the presence of flattened chondrocytes at the implant surface and columnar arrangement of chondrocytes in deeper zones. The observation of in vivo remodeling was also supported by the changes in biochemical composition of the constructs. At each time point, constructs had a collagen to proteoglycan ratio similar to that of native cartilage (3:1 collagen to proteoglycan). In contrast, the repair tissue for each control group was inferior to that produced with treated defects. These initial results hold promise for the generation of engineered articular cartilage for the clinical repair of cartilage defects without the limitations of current surgical repair strategies. / Thesis (Master, Chemical Engineering) -- Queen's University, 2012-01-31 01:03:15.276
|
2 |
Nouvelles stratégies thérapeutiques des affections articulaires du cheval : évaluation du potentiel thérapeutique des chondrocytes autologues et des cellules souches de cordon ombilical (sang et gelée de Wharton) : vers l'industrialisation de cellules médicaments. / New therapeutic strategies for articular disorders in the equine model : therapeutic potential evaluation of autologous chondrocytes and umbilical cord stem cells (from umbilical cord blood and Wharton jelly) : toward industrialization of drug cellsRakic, Rodolphe 05 September 2017 (has links)
Les affections articulaires touchant le cartilage, telles que les lésions focales et l’arthrose, correspondent aux principales causes de baisse de performance et d’arrêt prématuré de la carrière sportive du cheval. Ainsi, le traitement des affections du cartilage représente un enjeu vétérinaire majeur dans le monde équin, du fait des importantes pertes financières qu’elles occasionnent à la filière. Les faibles capacités de réparation intrinsèque du cartilage, ainsi que l’absence de thérapie à long terme des dommages cartilagineux, nécessitent le recours à des thérapies de nouvelles générations telle que l’ingénierie tissulaire du cartilage. Dans ce cadre, notre étude s’est attachée à comparer différents types cellulaires pour la génération de cartilage in vitro, afin d’envisager une implantation pour traiter les atteintes cartilagineuses chez le cheval. Une technique initialement développée chez l’Homme, la transplantation de chondrocytes autologues, représente toujours un « gold standard » en ingénierie tissulaire du cartilage. Dans ce travail de thèse, après avoir développé une nouvelle génération de substitut cartilagineux de haute qualité biologique, à partir de chondrocytes articulaires équins, des limites techniques et biologiques inhérentes au type cellulaire persistent. Ainsi, nos travaux se sont tournés vers la recherche de types cellulaires alternatifs. Les cellules souches/stromales mésenchymateuses (CSM) néonatales issues de cordon ombilical telles que les CSM de sang placentaire (CSM-SPL) et les CSM de gelée de Wharton (CSM-GW) pourraient représenter un avantage thérapeutique du fait de leur isolement non-invasif, de leur forte prolifération cellulaire et de leur capacité de différenciation en chondrocyte. Il est néanmoins indispensable de définir le meilleur candidat thérapeutique, parmi ces deux sources cellulaires, pour l’obtention d’un substitut cartilagineux de qualité biologique optimale. Ces résultats de thèse ont montré d’importantes différences dans le processus de chondrogenèse de ces deux sources de CSM néonatales et plaident en faveur de l’utilisation des CSM-SPL dans le cadre d’une stratégie thérapeutique d’ingénierie tissulaire du cartilage équin. Ces travaux ont permis une meilleure compréhension de la biologie du chondrocyte et des CSM. De surcroît, ces travaux permettent d’envisager de futurs essais cliniques chez le cheval, afin de traiter les affections articulaires de ce modèle gros animal. / Articular cartilage disorders, such as focal defects and osteoarthritis, are the main causes of decreased performance or early retirement of sport- and racehorses. Thus, cartilage disorders represent a major veterinary issue in the equine industry, due to significant financial losses. Poor intrinsic cartilage repair properties and the absence of long- term therapy for cartilage defects lead to the development and use of new generation therapies such as autologous chondrocytes implantation. In this context, our study aimed to compare different cell types for the in vitro cartilage generation, in order to implant the biological substitute to treat cartilage defects in the horse. A therapeutic strategy initially developed in human medicine, the autologous chondrocytes transplantation, always represents a "gold standard" in cartilage tissue engineering. In the present study, after developing a new generation of cartilaginous substitute of high biological quality, composed of equine articular chondrocytes, technical and biological limits inherent to the cell type persist. Thus, we have used alternative cell types such as neonatal mesenchymal stem/stromal cells (MSCs) from umbilical cord, such as umbilical cord blood MSC (UCB-MSCs) and umbilical cord matrix or Wharton jelly MSCs (UCM- MSCs). These MSCs sources could represent a therapeutic advantage due to their non-invasive isolation, their high cell proliferation and their ability to differentiate into chondrocytes. Nevertheless, it is essential to define the best therapeutic candidate between these two MSCs sources, to obtain an optimal quality for the neocartilaginous substitute. Our data highlighted important differences in the chondrogenesis process of these two neonatal MSCs sources, allowing us to consider UCB-MSCs as the best therapeutic candidate for equine cartilage tissue engineering. This work allows a better understanding of the chondrocyte and MSCs biology. Moreover, this work leads the way to setting-up future clinical trials in the horse, in order to treat articular defects of this large animal model.
|
Page generated in 0.0385 seconds