Spelling suggestions: "subject:"chromatin."" "subject:"ehromatin.""
471 |
The influence of DNA damage, DNA repair and chromatin structure on radiosensitivityRoos, Wynand Paul 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2001. / ENGLISH ABSTRACT: The factors which control radiosensitivity are of vital importance for the
understanding of cell inactivation and for cancer therapy. Cell cycle blocks, total
induced DNA damage, DNA repair, apoptosis and chromatin structure are likely
to playa role in the responses leading to cell death.
I have examined aspects of irradiation-induced G2/M blocks in DNA damage
and repair. In HT29, L132 and ATs4 cells the total amount of induced DNA
damage by isodoses of 4.5 Gy, 5 Gy and 2 Gy was found to be 14 %, 14 % and
12 % respectively. Most of the DNA repair was completed before the G2/M
maximum and only 3 % of DNA damage remains to be restored in the G2/M
block.
The radiosensitivity in eleven cell lines was found to range from SF2 of 0.02 to
0.61. By FADU assay the undamaged DNA at 5 Gy was found to range from
56% to 93%. The initial DNA damage and radiosensitivity were highly correlated
(r2=0. 81). After 5 Gy irradiation and 12 hours repair two groups of cell lines
emerged. The group 1 cell lines restored undamaged DNA to a level ranging
from 94 % to 98 %. The group 2 cell lines restored the undamaged DNA to a
level ranging from 77 % to 82 %. No correlation was seen between residual
DNA damage remaining after 12 hours repair and radiosensitivity.
In CHO-K1 cells chromatin condensation induced by Nocodazole was found to
marginally increase the radiosensitivity as shown by the change of the mean
inactivation dose (D) from 4.446 to 4.376 Gy. Nocodazole also increased the initial DNA damage, induced by 5 Gy, from 7 % to 13 %. In xrs1 cells these
conditions increased the radiosensitivity from D of 1.209 to 0.7836 Gy and the
initial DNA damage from 43 % to 57 %. Disruption of chromatin structure with a
hypertonic medium was found to increase radiosensitivity in CHO-K1 cells from
D of 4.446 to 3.092 Gy and the initial DNA damage from 7 % to 15 %. In xrs1
cells these conditions caused radiosensitivity to decrease from D of 1.209 to
1.609 Gy and the initial DNA damage from 43 % to 36 %.
Repair inhibition by Wortmannin increased the radiosensitivity in CHO-K1 from
a D of 5.914 Gy in DMSO controls to a D 3.043 Gy. In xrs1 cells repair inhibition
had no effect on radiosensitivity. Significant inhibition of repair was seen in
CHO-K1 at 2 hours (p<0.0001) and at 20 hours (p=0.0095). No inhibition of
repair was seen in xrs1 cells at 2 hours (p=0.6082) or 20 hours (p=0.6069).
While DNA repair must be allocated to the post-irradiation period, the G2/M
block seen in p53 mutants reaches a maximum only 12 hours post-irradiation
when most of the repair is completed. As the G2/M block resolves and cells reenter
cycle 28 hours after the G2 maximum it appears that repair processes
cannot be the only reason for the G2IM cell cycle arrest. At low doses of
irradiation initial DNA damage correlates with radiosensitivity. This suggests
that the initial DNA damage is a determinant for radiosensitivity. Repair of DNA
double-strand breaks by the non-homologous end joining (NHEJ) mechanism,
identified by inhibition with Wortmannin, was shown to influence residual DNA
damage and cell survival. Both the initial DNA damage and DNA repair were
found to be influenced by chromatin structure. Chromatin structure was modulated by high salt and by Nocodazole, and has heen identified as a
parameter which influences radiosensitivity. / AFRIKAANSE OPSOMMING: Die faktore wat betrokke is in die meganisme van stralings-sensitisering is van
hoogs belang vir die begrip van sel inaktiveering en kanker terapie. Sel siklus
blokke, totale geïnduseerde DNS skade, DNS herstel, apoptose en chromatien
struktuur is moontlike rol vertolkers in die sellulêre response wat ly tot seldood.
Ek het die aspekte van stralings-geïnduseerde G2/M blokke in DNS skade en
DNS herstelondersoek. Die hoeveelheid geïnduseerde DNS skade, deur
ooreenstemmende stralings-dosisse, in HT29, L132 en ATs4 selle is 14 %, 14
% en 12 %. Meeste van die DNS herstel is klaar voordat die G2/M maksimum
beryk word en net 3 % DNS skade blyoor om herstel te word in die G2/M blok.
Die stralings-sensitiwiteit in elf sel lyne varieer tussen 'n SF2 van 0.02 en 0.61.
Deur die gebruik van die FADU metode is gevind dat die onbeskadigde DNS na
5 Gy bestraling varieer tussen 56 % en 93 %. Die totale geïnduseerde DNS
skade en stralings-sensitiwiteit was hoogs gekorreleer (r2=0.81). Na 5 Gy
bestraling en 12 ure herstel kan die sel lyne in twee groepe gegroepeer word.
Die groep 1 sellyne herstel die onbeskadigde DNS terug na 'n vlak wat varieer
tussen 94 % en 98 %. Die groep 2 sel lyne herstel die onbeskadigde DNS terug
tot op 'n vlak wat varieer tussen 77 % en 82 %. Geen korrelasie is gesien
tussen oorblywende DNS skade en stralings-sensitiwiteit na 12 ure herstel nie.
In die CHO-K1 sel lyn, chromatien kompaksie geïnduseer deur Nocodazole,
vererger die stralings- sensitiwiteit soos gesien deur die gemiddelde
inaktiveerings dosis (D) wat verlaag het van 4.446 tot 4.376. Nocodazole het
ook die totale DNS skade verhoog van 7 % tot 13 %. Onder dieselfde kondisies, in die xrs1 sel lyn, is 'n verergering van stralings-sensitiwiteit (D) gesien van
1.209 tot 0.7836 en verhoog ONS skade van 43 % tot 57 %. Die ontwrigting van
die chromatien struktuur deur die gebruik van hipertoniese medium het die
stralings-sensitiwiteit (D) vererger in CHO-K1 selle van 4.446 tot 3.092. Die
totale ONS skade is verhoog van 7 % tot 15 %. Onder dieselfde kondisies, in
die xrs1 sellyn, verbeter die stralings-sensitiwiteit (D) van 1.209 tot 1.609 en die
totale ONS skade verminder van 43 % tot 36 %. ONS herstel inaktiveering in die
teenwoordigheid van Wortmannin het die stralings-sensitiwiteit (D) in CHO-K1
selle vererger van 5.914 in DMSO verwysings kondisies tot 3.043. Die ONS
herstel inaktiveering in xrs1 selle het geen uitwerking gehaat op stralingssensitiwiteit
nie. Noemenswaardige inaktiveering van ONS herstel is gesien in
CHO-K1 selle na 2 ure (p<0.0001) en na 20 ure (p=0.0095). Geen inaktiveering
is gesien in xrs1 selle na 2 ure (p=0.6082) of na 20 ure (p=0.6069) nie.
TerwylONS herstel moet plaasvind na die bestralings periode, beryk die G2/M
blok in p53 gemuteerde selle sy maksimum 12 ure na bestraling terwyl meeste
van die ONS herstel alreeds voltooi is. Aangesien die G2/M blok eers 28 ure
later begin sirkuleer moet die G2/M blok nog 'n funksie vervul anders as ONS
herstel. By lae dosisse van bestraling korreleer die totale geïnduseerde ONS
skade met stralings-sensitiwiteit. Dit dui daarop dat die totale ONS skade 'n
bepalende faktor moet wees in stralings-sensitiwiteit. Die herstel van ONS
skade deur die nie-homoloë eindpunt samevoeging (NHES) meganisme,
geïdentifiseer deur inaktiveering deur Wortmann in, het 'n invloed op
oorblywende ONS skade en sellulêre oorlewing. Beide die totale ONS skade en
ONS herstel was beïnvloed deur die chromatien struktuur. Chromatien struktuur was gemoduleer deur hoë sout konsentrasies en deur Nocodazole, en is
geïdentifiseer as a belangrike parameter wat stralings-sensitiwiteit beïnvloed.
|
472 |
Hypoxia-induced chromatin changes and ATM signallingOlcina del Molino, Mónica January 2014 (has links)
The DNA damage response (DDR) is a complex signalling cascade triggered in response to stress, in an attempt to maintain genomic integrity. Components of this pathway, such as ATM-mediated signalling, have been proposed to act as a barrier in the early stages of tumourigenesis. Regions of low oxygen concentrations (hypoxia) occur in most solid tumours and are associated with a poor prognostic outcome. Here, we investigated the DDR induced following hypoxia-induced replication stress in an attempt to decipher the mechanism of ATM activation in response to physiological stresses that do not induce DNA damage. We hypothesized that hypoxia-mediated chromatin changes could impact on ATM signalling. We have characterised H3 methylation in response to hypoxia and found oxygen dependent changes in H3K9me3, including both global and replication fork associated increases in this histone modification. Importantly, we have found that decreases in H3K9me3 result in loss or attenuation of ATM activation. Notably, in a background of replication stress and increased H3K9me3, ATM inhibition or loss leads to accumulation of DNA damage and a significant decrease in replication rates in hypoxia. We propose that when replication stress occurs in the presence of hypoxia-induced chromatin changes, ATM activation is facilitated by the induction of H3K9me3. In this context, we propose a novel and stress specific role for ATM-mediated signalling in maintaining replication and preventing the generation of DNA breaks that may compromise genomic integrity. Moreover, the biological consequences of the hypoxia-induced chromatin context and in particular hypoxia-induced H3K9me3 include the repression of APAK, a negative regulator of p53. Activation of p53 is a key consequence of the hypoxia-induced DDR. Here we found that SETDB1, one of the H3 methyltransferases induced by hypoxia, mediates APAK repression. We propose that H3K9me3 plays a role in regulating APAK expression to allow optimal induction of p53 dependent apoptosis in hypoxic conditions suggesting a further role for H3K9me3 in facilitating DDR signalling in hypoxia. Together, these data suggest that the hypoxic chromatin context is critical for the role of the DDR as a barrier to tumourigenesis and predict that altering the chromatin landscape in combination with DNA damaging therapies would be efficacious in the treatment of hypoxic tumours.
|
473 |
Chromatin architecture and transcriptional regulation at the Epidermal Differentiation Complex (EDC) locus : the role of epigenetic factors in modulating chromatin structure and tissue-specific gene expression at the murine EDC locus during epidermal differentiationYarker, Joanne Lauren January 2014 (has links)
The epidermal differentiation complex (EDC) encodes co-ordinately regulated genes critically involved in epidermal differentiation, however knowledge of the molecular mechanisms involved in co-ordinating EDC gene expression is limited. Recent findings indicate p63 dependent changes in the nuclear localisation and higher-order chromatin folding the EDC coincide with the onset of epidermal stratification during embryonic development. Here it is demonstrated that a direct transcription target of p63, the chromatin-remodelling enzyme Brg1, modulates the specific nuclear positioning of the EDC and transcription of differentiation-specific gene encoded at the EDC. In addition, the results of high-resolution 5C-based analyses of the spatial chromatin interactome at a 5.3Mb region spanning the murine EDC in epidermal keratinocytes, and the silenced EDC in thymocytes, are presented. Chromatin interactions at the EDC region in keratinocytes include long-range interactions between multiple proximal and distal candidate gene regulatory regions. Many candidate regulatory elements involved in looping chromatin interactions at the EDC region are enriched for both active (H3K4me1, H3K27ac) and repressive (H3K27me3) chromatin marks and are bound by Sin3a and RBP2 co-repressor complexes. The chromatin interactome at the EDC in epidermal progenitor cells is enriched for bound chromatin architectural proteins Satb1, Satb2, and the cohesin subunit Rad21. Further, a substantial degree of co-localisation is observed between these chromatin architectural proteins, transcription factors and co-factors. Findings presented here suggest that a functional chromatin interactome, mediated by Satb proteins and cohesin, acts in conjunction with transcriptional repressor complexes to facilitate co-ordinated gene expression at the EDC in epidermal progenitor cells upon differentiation. These results provide a foundation for further study of the mechanisms controlling EDC gene expression in health and disease.
|
474 |
Mad2l2 as a safeguard for open chromatin in embryonic stem cellsRahjouei, Ali 13 June 2016 (has links)
No description available.
|
475 |
Establishing tissue-specific chromatin organization during development of the epidermis : nuclear architecture of different layers of murine epidermis and the role of p63 and Satb1 in establishing tissue-specific organization of the epidermal differentiation complex locusGdula, Michal Ryszard January 2011 (has links)
During development, multipotent stem cells establish tissue-specific programmes of gene expression that underlie a process of differentiation into specialized cell types. It was shown in the study that changes in the nuclear architecture during terminal keratinocyte differentiation show correlation with the dynamics of the transcriptional and metabolic activity. In particular, terminal differentiation is accompanied by the decrease of nuclear volume, elongation of its shape, reduction of the number and fusion of nucleoli, increase in the number of centromeric clusters and a dramatic decrease of the transcriptional activity. Global changes in the nuclear architecture of epidermal keratinocytes are associated with marked remodelling of the higher-order chromatin structure of the epidermal differentiating complex (EDC). EDC is positioned peripherally in the epidermal nuclei at E11.5 when its genes show low expression levels and relocates towards the nuclear interior at E16.5 when EDC genes are markedly upregulated. P63 transcription factor serving as a master regulator of epidermal development is involved in the control of EDC relocation in epidermal progenitor cells. The epidermis of E16.5 p63KO exhibits significantly more peripheral positioning of the EDC loci, compared to wild-type. The genome organizer Satb1 serving as a direct p63 target controls higher order chromatin folding of the central part of EDC and Satb1 knockout mice show alterations of epidermal development and expression of the EDC encoded genes. Thus, this study shows that the programme of epidermal development and terminal differentiation is regulated by p63 and other factors and include marked remodelling of three-dimensional nuclear organization and positioning of tissue specific gene loci. In addition to the direct involvement of p63 in controlling the expression of tissue-specific genes, p63 via regulation of the chromatin remodelling factors such as Satb1 promotes establishing specific conformation of the EDC locus required for efficient expression of terminal differentiation-associated genes.
|
476 |
Correlation between Fertilization, Cleavage and Pregnancy Rate with Sperm DNA-Fragmentation Index (DFI)Nymo, Kaitlin January 2008 (has links)
<p>The chromatin integrity in sperm cells is vital for successful pregnancy. In this</p><p>study DNA-damage was evaluated in sperm cells from 50 men attending In Vitro Fertilization</p><p>(IVF) or Intra Cytoplasmic Sperm Injection (ICSI) treatment. Male semen samples were</p><p>purified with a two-shift gradient before the sperm cells were treated with the Halosperm® Test</p><p>Kit and evaluated for DNA-damage. The samples were divided in two groups according to DNAFragmentation</p><p>Index (DFI) of 30 % and the results correlated with fertilization, cleavage and</p><p>pregnancy rate. Men with DFI ≥ 30 % had a higher fertilization and pregnancy rate and a lower</p><p>cleavage rate compared to men with DFI ≤ 30 %. The conclusions were that fertilization in vitro</p><p>may be independent of the degree of DNA-damage, the embryonic development could be</p><p>seriously disrupted by damaged sperm cells, and the pregnancy rate showed no correlation to a</p><p>DFI threshold of 30 %.</p>
|
477 |
Chromatin Insulators and CTCF: Architects of Epigenetic States during Development.Mukhopadhyay, Rituparna January 2004 (has links)
A controlled and efficient coordination of gene expression is the key for normal development of an organism. In mammals, a subset of autosomal genes is expressed monoallelically depending on the sex of the transmitting parent, a phenomenon known as genomic imprinting. The imprinted state of the H19 and Igf2 genes is controlled by a short stretch of sequences upstream of H19 known as the imprinting control region (ICR). This region is differentially methylated and is responsible for the repression of the maternally inherited Igf2 allele. It harbors hypersensitive sites on the unmethylated maternal allele and functions as an insulator that binds a chromatin insulator protein CTCF. Hence the H19 ICR, which plays an important role in maintaining the imprinting status of H19 and Igf2, was shown to lose the insulator property upon CpG methylation. Another ICR in the Kcnq1 locus regulates long-range repression of p57Kip2 and Kcnq1 on the paternal allele, and is located on the neighboring subdomain of the imprinted gene cluster containing H19 and Igf2, on the distal end of mouse chromosome 7. Similarly to the H19 ICR, the Kcnq1 ICR appears to possess a unidirectional and methylation-sensitive chromatin insulator property in two different somatic cell types. Hence, methylation dependent insulator activity emerges as a common feature of imprinting control regions. The protein CTCF is required for the interpretation and propagation of the differentially methylated status of the H19 ICR. Work in this thesis shows that this feature applies genomewide. The mapping of CTCF target sites demonstrated not only a strong link between CTCF, formation of insulator complexes and maintaining methylation-free domains, but also a network of target sites that are involved in pivotal functions. The pattern of CTCF in vivo occupancy varies in a lineage-specific manner, although a small group of target sites show constitutive binding. In conclusion, the work of this thesis shows that epigenetic marks play an important role in regulating the insulator property. The studies also confirm the importance of CTCF in maintaining methylation-free domains and its role in insulator function. Our study unravels a new range of target sites for CTCF involved in divergent functions and their developmental control.
|
478 |
TbISWI and its role in transcriptional control in Trypanosoma bruceiKushwaha, Manish January 2010 (has links)
ISWI is a member of a versatile family of ATP-dependent chromatin remodelling complexes involved not only in transcription regulation (initiation, elongation and termination), but also in other cellular functions like maintenance of higher order chromatin structure and DNA replication. TbISWI, a novel ATPase of the ISWI family in Trypanosoma brucei, is involved in the transcriptional repression of silent VSG expression sites (ESs) in both bloodstream form (BF) and procyclic form (PF) life cycle stages of the parasite. Using in silico analysis, I have found that TbISWI is well conserved across the eukaryotic lineage, including those members of the order Kinetoplastida that do not exhibit antigenic variation. Compared to the ISWIs of higher eukaryotes, TbISWI has greater representation of random coils within its structure, an indicator of more structural fluidity and flexibility of interaction with multiple protein partners. Using an eGFP reporter based assay, I have studied the role of TbISWI in transcriptional repression of silent areas of the T. brucei genome. TbISWI was found to be involved in preventing inappropriate transcription of the silent VSG repertoires. TbISWI was also found to downregulate transcription in RNA pol I, but not pol II, transcription units. These results argue for the presence of at least two functionally distinct TbISWI complexes in T. brucei. Using DNA staining and fluorescence in situ hybridisation (FISH), I have investigated the potential effect of TbISWI depletion on cell cycle progression and minichromosome segregation. I did not find any evidence for the role of TbISWI in the maintenance of centromeric heterochromatin in T. brucei.
|
479 |
Contrôles épigénétiques du cycle cellulaire : fonctions et régulation de la lysine méthyltransférase PR-Set7 / Epigenetics controls of the cell cycle : functions and regulation of the lysine methyltransferase PR-Set7Tardat, Mathieu 14 December 2010 (has links)
La lysine méthyltransférase PR-Set7 est responsable de la monométhylation de la lysine 20 de l'histone H4 (H4K20me1). Son expression varie au cours du cycle cellulaire. D'un niveau peu élevé en phase S, l'enzyme atteint un niveau maximum au cours de la mitose. Mon projet de thèse avait pour but de caractériser les fonctions de PR-Set7 et les raisons de cette régulation au cours du cycle. Présentés sous forme de publication, les résultats de ma thèse montrent que PR-Set7 induit un signal H4K20me1 au niveau des origines de réplication pendant la mitose, ce qui permet le recrutement des complexes de pré-réplication (Pre-RC) contenant les facteurs nécessaires à la formation des fourches de réplication lors la phase S suivante. En effet, la présence de PR-Set7 sur une séquence d'ADN spécifique est suffisante pour induire le co-recrutement des protéines du complexe Pre-RC, tandis que l'inactivation de l'enzyme conduit au contraire à un défaut d'assemblage de ces complexes suivi d'un stress réplicatif. Lors de la phase S, PR-Set7 est dégradée par le complexe Cul4-DDB1, via son interaction avec la protéine PCNA. Cette dégradation permet la disparition du signal H4K20me1 des origines et l'inhibition des complexes Pre-RC, s'assurant ainsi que les origines sont actives une seule fois par cycle cellulaire. La mutation du domaine d'interaction avec PCNA est suffisante pour empêcher la dégradation de PR-Set7, entraînant alors la maintenance du signal H4K20me1 et une activation répétée des origines pendant la phase S (phénotype de sur-réplication). L'ensemble de mes résultats établissent PR-Set7 et le signal H4-K20me1 comme un nouveau mécanisme épigénétique de contrôle des origines de réplication chez les mammifères. / The lysine methyltransferase PR-Set7 is responsible of the monomethylation of lysine 20 of histone H4 (H4K20me1). Its expression is cell-cycle regulated. With weak levels in S phase, this enzyme reach a peak level during mitosis. My PhD project was to characterize the functions of PR-Set7 and the reasons underlying its cell-cycle regulation. Presented as publications, my results show that PR-Set7 induces H4K20me1 on replication origins during mitosis, which allows recruitment of pre-replication complexes (Pre-RC) containing all the factors required to create replication forks during the next S phase. Indeed, the presence of PR-Set7 on a specific DNA sequence is sufficient to induce the co-recruitment of Pre-RC complex proteins, whereas the inactivation of this enzyme leads to defects in the assembly of these complexes followed by a replicative stress. During S phase, PR-Set7 is degraded par the Cul4-DDB1 complex through its association with PCN A. This degradation induces the disappearance of H4K20me1 on origins and inhibition of Pre-RC complexes, ensuring that origins are activated only once per cell cycle. Mutations in the interaction domain with PCNA are sufficient to prevent PR-Set7 degradation, leading to the maintenance of H4K20me1 and a multiple activation of origins during S phase (over-replication phenotype). My results establish PR-Set7 and H4K20me1 as a new epigenetic mechanism to control replication origins in mammals.
|
480 |
Role des modifications des histones dans le maintien et la lecture de l’empreinte génomique chez la souris. / Role of histone modifications in the maintenance and reading of genomic imprinting in miceSanz, Lionel 07 December 2010 (has links)
L'empreinte génomique est un mécanisme épigénétique qui conduit à l'expression d'un seul des deux allèles parentaux pour une centaine de gènes autosomaux chez les mammifères. La majorité des gènes soumis à l'empreinte est regroupée en clusters et tous ces gènes sont sous le contrôle de séquences discrètes appelées ICR (Imprinting Control Region). Les ICRs sont marquées épigénétiquement par une méthylation d'ADN et des modifications des histones alléliques. La méthylation d'ADN au niveau de ces ICRs est un facteur clé de l'empreinte et va être établie dans les lignées germinales suivant le sexe de l'embryon. Après fécondation, le nouvel embryon portera les empreintes paternelles et maternelles, ces empreintes devront alors être maintenues pendant tout le développement et interprétés dans le but de conduire à l'expression allélique des gènes soumis à l'empreinte. Cependant, la méthylation d'ADN ne peut expliquer à elle seule tous les aspects de l'empreinte génomique. Ainsi, d'autres marques épigénétiques doivent agir dans le maintien et la lecture de ces empreintes. Nous avons mis en évidence dans un premier temps que le contrôle de l'expression allélique dans le cerveau de Grb10 repose sur la résolution d'un domaine bivalent allélique spécifiquement dans le cerveau. Ces résultats mettent en avant pour la première fois un domaine bivalent dans le contrôle de l'expression des gènes soumis à l'empreinte et propose un nouveau mécanisme dans l'expression tissu spécifique de ces gènes. D'autre part, bien que des études en cellules ES aient démontré un rôle de G9a dans le maintien des empreintes au cours du développement embryonnaire, nos données suggèrent que G9a ne serait pas essentielle a ce maintien dans un contexte in vivo. / Genomic imprinting is a developmental mechanism which leads to parent-of-origin-specific expression for about one hundred genes in mammals. Most of imprinted genes are clustered and all are under control of sequence of few kilobases called Imprinting Control Region or ICR. ICRs are epigenetically marked by allelic DNA methylation and histone modifications. DNA methylation on ICRs is a key factor which is established in germ cells according to the sex of the embryo. After fecundation, the new embryo will harbored both paternal and maternal imprints which have to be maintained during the development and read to lead to allelic expression of imprinted genes. However, allelic DNA methylation alone cannot explain every aspect of genomic imprinting. Thus, there should be other epigenetic marks which act in the maintaining and reading of the imprints.Our data first indicate that bivalent chromatin, in combination with neuronal factors, controls the paternal expression of Grb10 in brain, the bivalent domain being resolved upon neural commitment, during the developmental window in which paternal expression is activated. This finding highlights a novel mechanism to control tissue-specific imprinting. On an other hand, although previous studies in ES cells show a role for G9a in the maintaining of imprints during embryonic development, our data suggest that G9a would not be essential in an in vivo model.
|
Page generated in 0.0415 seconds