Spelling suggestions: "subject:"chromatin."" "subject:"ehromatin.""
431 |
Etudes structurales sur l'assemblage du nucléosome / Structural studies of Nucleosome AssemblyAguilar Gurrieri, Carmen 05 July 2013 (has links)
Au sein du noyau, l'ADN est organise en chromatine dont l'unité de base est le nucléosome. La structure de la chromatine est très dynamique, ce qui est nécessaire pour la plupart des opérations qui se produisent dans l'ADN telles que la réplication, la transcription, la réparation et la recombinaison. Le nucléosome est constitué de deux dimères H2A/H2B et deux dimères H3/H4 associés avec 147 paires de bases d'ADN. La protéine Nap1 est un chaperon d'histone H2A/H2B impliquée dans l'assemblage et démontage des nucléosomes. Nap1 protège les interactions non spécifiques entre l'ADN chargé négativement et les dimères H2A/H2B chargés positivement, afin de permettre la formation de la structure ordonnée des nucléosomes. Lors de l'assemblage des nucléosomes, les dimères d'histones H3/H4 sont déposés en premier lieu, suivi par le dépôt de dimères H2A/H2B. Lors du démontage du nucléosome, les dimères H2A/H2B sont retirés avant le retrait des dimères H3/H4. La determination de la structure du complexe Nap1-H2A/H2B pourra permettre une meilleure compréhension du processus d'assemblage du nucléosome. Dans cette étude, nous voulons comprendre comment le chaperon Nap1 cible spécifiquement les dimères d'histones H2A/H2B pour l'assemblage des nucléosomes. Notre objectif est de caractériser la structure et la fonction du complexe de Nap1-H2A/H2B. Ainsi nous nous sommes tout d'abord intéresse à la stoechiometrie de ce complexe. Nous avons trouvé qu'un dimère de Nap1 s'associe à un dimère H2A/H2B (Nap1_2-H2A/H2B). D'autre part, l'analyse par spectrométrie de masse non-dénaturante a montré que ce complexe de base peut s'oligomériser et contenir jusqu'à 6 copies de Nap1_2-H2A/H2B. L'analyse de ce complexe par spectrométrie de masse non-dénaturant a montré que ce complexe peu oligomériser dans un grand complexe contenant jusqu'à 6 copies de Nap1_2-H2A/H2B. Nous avons également obtenu la première structure cristalline à basse résolution de ce complexe. L'analyse du même complexe par microscopie électronique à coloration négative a révélé la présence en solution du même oligomère que dans l'unité asymétrique du cristal, qui contient aussi 6 copies de Nap1_2-H2A/H2B. Ainsi, nous avons pu mettre en évidence de nouvelles interfaces d'interaction entre les différents composants de ce complexe qui nous permettent de mieux comprendre le processus d'assemblage des nucléosomes. Le remodelage de la chromatine permet l'expression des gènes eucaryotes. Ce remodelage nécessite des enzymes telles que des histone acétyltransférases (HAT) et les chaperons d'histones. Les HATs acétylent les chaînes latérales des lysines. Il a été proposé que les HATs et les histones chaperons agissent en synergie pour moduler la structure de la chromatine pendant la transcription. La HAT p300 a été proposé d'interagir avec l'histone chaperon Nap1. Nous avons entrepris de caractériser cette interaction. Malheureusement, nos expériences n'ont pas pu détecter d'interaction directe entre ces protéines. / Assembly of chromatin is an essential process that concerns most DNA transactions in eukaryotic cells. The basic repeating unit of chromatin are nucleosomes, macromolecular complexes that consist of a histone octamer that organizes 147 bp of DNA in two superhelical turns. Although, the structures of nucleosomes are known in detail, their assembly is poorly understood. In vivo, nucleosome assembly is orchestrated by ATP-dependent remodelling enzymes, histone-modifying enzymes and a number of at least partially redundant histone chaperones. Histone chaperons are a structurally diverse class of proteins that direct the productive assembly and disassembly of nucleosomes by facilitating histone deposition and exchange. The currently accepted model is that nucleosome assembly is a sequential process that begins with the interaction of H3/H4 with DNA to form a (H3/H4)2 tetramer-DNA complex. The addition of two H2A/H2B dimers completes a canonical nucleosome. High-resolution structures of histone chaperons in complex with H3/H4 histones have resulted in detailed insights into the process of nucleosome assembly. However, our understanding of the mechanism of nucleosome assembly has been hampered by the as yet limited number of co-crystal structures of histone–chaperone complexes. In particular it remains unclear how histone chaperons mediate H2A/H2B deposition to complete nucleosome assembly. In this work, we have investigated the role of the H2A/H2B chaperon Nap1 (Nucleosome assembly protein 1) in nucleosome assembly. We have determined the crystal structure of the complex between Nap1 and H2A/H2B and analysed the assembly by various biophysical methods. The structure shows that a Nap1 dimer binds to one copy of H2A/H2B (Nap1_2-H2A/H2B). A large ~550 kDa macromolecular assembly containing 6 copies of the Nap12-H2A/H2B complex is seen in the asymmetric crystallographic unit. We confirmed by both non-denaturing mass spectroscopy and negative stain electron microscopy studies that this assembly is the predominant form of the Nap1_2-H2A/H2B complex in solution. We further investigated the potential interplay between p300-mediated histone acetylation and nucleosome assembly. Together, the structure and associated functional analysis provide a detailed mechanism for the Nap1 chaperon activity, its role in H2A/H2B deposition and in nucleosome assembly.
|
432 |
Genome-wide analysis of ATP-dependent chromatin remodeling functions in embryonic stem cells / Analyse de la fonction des facteurs de remodelage de chromatine ATP-dépendants dans le contrôle de l’expression du génome des cellules souches embryonnairesBou Dargham, Daria 13 October 2015 (has links)
Les cellules souches embryonnaires (cellules ES) constituent un excellent système modèle pour étudier les mécanismes épigénétiques contrôlant la transcription du génome mammifère. Un nombre important de membres de la famille des facteurs de remodelage de chromatine ATP-dépendants ont une fonction essentielle pour l’auto-renouvellement des cellules ES, ou au cours de la différentiation. On pense que ces facteurs exercent ces rôles essentiels en régulant l’accessibilité de la chromatine au niveau des éléments régulateurs de la transcription, en modulant la stabilité et le positionnement des nucléosome.Dans ce projet, nous avons conduit une étude génomique à grande échelle du rôle d’une dizaine des remodeleurs (Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Ep400, Brg1, Smarca3, Smarcad1, Smarca5, ATRX et Chd1l) dans les cellules ES. Une double stratégie expérimentale a été utilisée : Des expériences d’immunoprécipitation de la chromatine suivi par un séquençage à haute-débit (ChIP-seq) sur des cellules ES étiquetées pour les différents remodeleurs, pour étudier leur distribution sur le génome, et un approche transcriptomique sur des cellules déplétées de chaque remodeleur par traitement avec des vecteurs shRNA (knockdown). Nous avons établi les profils de liaison des remodeleurs sur des éléments régulateurs (promoteurs, enhancers et sites CTCF) sur le génome, et montré que ces facteurs occupent toutes les catégories d’éléments régulateurs du génome. La corrélation entre les données ChIP-seq et les données transcriptomiques nous a permis d’analyser le rôle des remodeleurs dans les réseaux de transcription essentiels des cellules ES. Nous avons notamment démontré l’importance particulière de certains remodeleurs comme Brg1, Chd4, Ep400 et Smarcad1 dans la régulation de la transcription chez les cellules ES. / The characteristics of embryonic stem cells (ES cells) make them one of the best models to study the epigenetic regulation exerted by different actors in order to control the transcription of the mammalian genome. Members of the Snf2 family of ATP-dependent chromatin remodeling factors were shown to be of specific importance for ES cell self-renewal and during differentiation. These factors are believed to play essential roles in modifying the chromatin landscape through their capacity to position nucleosomes and determine their occupancy throughout the genome, making the chromatin more or less accessible to DNA binding factors.In this project, a genome-wide analysis of the function of a number of ATP-dependent chromatin remodelers (Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1, Ep400, ATRX, Smarca3, Smarca5, Smarcad1 and Alc1) in mouse embryonic stem (ES) cells was conducted. This was done using a double experimental strategy. First, a ChIP-seq (Chromatin Immunoprecipitation followed by deep sequencing) strategy was done on ES cells tagged for each factor in the goal of revealing the genomic binding profiles of the remodeling factors. Second, loss-of-function studies followed by transcriptome analysis in ES cells were performed in order to understand the functional role of remodelers. Data from both studies were correlated to acquire a better understanding of the role of remodelers in the transcriptional network of ES cells. Specific binding profiles of remodelers on promoters, enhancers and CTCF binding sites were revealed by our study. Transcriptomic data analysis of the deregulated genes upon remodeler factor knockdown, revealed the essential role of Chd4, Ep400, Smarcad1 and Brg1 in the control of transcription of ES cell genes. Altogether, our data highlight how the distinct chromatin remodeling factors cooperate to control the ES cell state.
|
433 |
The role of Histone H3 Lysine 4 trimethylation in zebrafish embryonic developmentKrause, Maximilian 09 March 2017 (has links)
Cells within multicellular organisms share the same genetic information, yet their shape and function can differ dramatically. This diversity of form and function is established by differential use of the genetic information. Early embryonic development describes the processes that lead to a fully differentiated embryo starting from a single fertilized cell - the zygote. Interestingly, in metazoan species this early development is governed by maternally provided factors (nutrients, RNA, protein), while the zygotic genome is transcriptionally inactive. Only at a specific developmental stage, the zygotic genome becomes transcriptionally active, and zygotic transcripts drive further embryonic development. This major change is called zygotic genome activation (ZGA). While major regulators of activation of early zygotic genes could be identified recently, the molecular mechanisms that contribute to robust global genome activation during embryonic development is not fully understood.
In this study, I investigated whether the establishment of histone H3 lysine 4 trimethylation (H3K4me3) is involved in zebrafish zygotic transcription activation and early embryonic development. H3K4me3 is a chromatin modification that is implicated in transcription regulation. H3K4me3 has been shown to be enriched at Transcription Start Sites (TSS) of genes prior to their activation, and is postulated facilitate transcription activation of developmentally important genes. To interfere with H3K4me3 establishment, I generated histone methyltransferase mutants. I further inhibited H3K4me3 establishment by introduction of histones with lysine 4-to-methionine (K4-to-M) substitution, which act as dominant-negative inhibitors of H3K4me3 establishment. Upon H3K4me3 reduction, I studied the resulting effect on early transcription activation. I found that H3K4me3 is not involved in transcription activation during early zebrafish embryogenesis. Finally I analyzed possible cues in DNA sequence and chromatin environment that might favor early H3K4me3 establishment.
These studies show that H3K4me3 is established during ZGA, yet it is not involved in transcription activation during early zebrafish development. Establishment of H3K4me3 might be a consequence of histone methyltransferase recruitment during a permissive chromatin state, and might be targeted to CpG-rich promoter elements that are enriched for the histone variant H2A.z.:Frontmatter II
Acknowledgements VII
Thesis Summary (English) IX
Thesis Summary (German) X
Table of Contents XIV
List of Figures XVI
List of Tables XVII
List of Abbreviations XXIII
1 Introduction 1
1.1 Transcription regulation 2
1.1.1 Promoter elements - genetic information that guides transcription initiation 2
1.1.2 Enhancers - fine-tuning of transcription by distal DNA elements 3
1.1.3 CpG islands - DNA sequences that allow for epigenetic regulation 4
1.2 Chromatin 4
1.2.1 Histone variants 7
1.2.2 Posttranslational histone modifications 7
1.2.3 Histone Lysine methylation 8
1.2.4 H3K4me3 in embryonic development 10
1.3 Establishment and removal of H3K4me3 10
1.3.1 Set1 homologs - Set1a and Set1b 11
1.3.2 Trithorax homologs - Mll1 and Mll2 11
1.3.3 Homologs of Trithorax-related - Mll3 and Mll4 13
1.3.4 COMPASS complex proteins 13
1.3.5 H3K4me3 removal 14
1.4 Transcription activation in embryos 14
1.4.1 Zebrafish early embryonic development 15
1.4.2 H3K4me3 during early zebrafish development 17
1.5 Thesis aim 17
2 Materials and Methods 19
2.1 Materials 19
2.2 Methods 36
2.2.1 Zebrafish husbandry and care 36
2.2.2 Generation of zebrafish knock-out lines by TALEN mutagenesis 36
2.2.3 Generation of plasmids for mRNA production 38
2.2.4 Microinjection 39
2.2.5 Germline transplantation 39
2.2.6 Western Blot Assays 40
2.2.7 RNA extraction and quantification assays 41
2.2.8 Chromatin immunoprecipitation (ChIP) 43
2.3 Bioinformatics Analyses 46
2.3.1 Quality control, alignment and peak calling 46
2.3.2 Lambda normalization 46
2.3.3 Differential ChIP enrichment analysis 47
2.3.4 Data integration 47
2.3.5 Gene classification 48
3 Results I: H3K4me3 interference by Histone methyltransferase mutation 49
3.1 Generation and phenotypic description of histone methyl-transferase mutants 49
3.1.1 HMT TALEN mutagenesis workflow 49
3.1.2 Ash2l TALEN mutation does not result in a larval or adult phenotype 52
3.1.3 Mll2 mutation results in increased larval mortality, while adult fish are healthy and fertile 54
3.1.4 Mll1 mutation results in increased larval mortality and a severe adult phenotype 56
3.2 HMT mutations do not affect global H3K4me3 levels in early zebrafish embryos 60
3.3 Mll1 mutation results in local H3K4me3 reduction of a small subset of genes 62
3.4 Early embryonic transcription is not altered in mll1 maternal-zygotic mutants 67
3.5 Conclusion 70
4 Results II: H3K4me3 interference by introduction of HMT inhibitors 71
4.1 Establishing a Western Blot assay to monitor H3K4me3 reduction 71
4.2 Overexpression of H3K4-specific histone demethylases does not result in global H3K4me3 reduction 73
4.3 Global reduction of H3K4me3 could not be achieved by small-molecule inhibition of HMT activity 75
4.4 Overexpression of K4-specific methylation-defective H3 results in global H3K4me3 reduction 76
4.4.1 Overexpression of H3K4-to-E constructs does not affect global H3K4me3 establishment 76
4.4.2 H3K4-to-M constructs act as dominant-negative substrate for H3K4me3 establishment 77
4.5 H3K4me3 levels at gene promoters are reduced upon introduction of
methylation-defective Histone H3 79
4.6 Early transcription activation is not altered upon K4M overexpression 88
4.7 Conclusion 92
5 Results III: Promoters rich in CpG and H2A.z gain H3K4me3 early 93
5.1 H3K4me3 levels increase over developmental time at all gene classes 93
5.2 H3K4me3 is gained at CpG-rich elements 98
5.3 H2A.z marks overlaps with H3K4me3 at promoters of non-transcribed genes 100
5.4 High CpG density and H2A.z enrichment are predictive for H3K4me3 establishment 101
5.5 Maternally provided genes are enriched for H2A.z and CpG content 103
5.6 Conclusion 104
6 Discussion 105
6.1 Neither Mll1 nor Mll2 are the main histone methyltransferase for H3K4me3 establishment in early zebrafish development 106
6.2 H3K4me3 reduction does not affect transcription initiation during genome activation 107
6.3 The timing of H3K4me3 establishment might be determined by a permissive chromatin state 109
6.4 H3K4me3 potentially gains importance during later developmental stages 111
6.5 CpG-content and H2A.z enrichment might be predictive for H3K4me3 establishment during genome activation 112
6.6 Conclusion 115
Appendix 117
Bibliography 139
Authorship Declaration 159 / Jede Zelle eines multizellulären Organismus enthält dieselbe Erbinformation, und doch können Form und Funktion von Zellen untereinander sehr unterschiedlich sein. Diese Diversität wird durch unterschiedliches Auslesen - Transkribieren - der Erbinformation erreicht. Embryogenese beschreibt den Prozess, der aus einer einzelnen Zelle - der Zygote - einen multizellulären Embryo entstehen lässt. Interessanterweise laufen frühe Stadien der Embryogenese ohne Transkription der embryonalen Erbinformation ab, sondern werden durch maternal bereitgestellte Faktoren ermöglicht. Erst nach einer spezies-spezifischen Entwicklungsphase wird das Erbgut der Zygote aktiv transkribiert und ermöglicht die weitere Embryonalentwicklung. Obwohl bereits wichtige Regulatoren dieser globalen Genomaktivierung identifiziert werden konnten, sind viele molekulare Mechanismen, die zur Aktivierung des zygotischen Genoms beitragen, bisher unbekannt.
In der hier vorliegenden Doktorarbeit habe ich die Rolle von Histon H3 Lysin 4 Trimethylierung (H3K4me3) während der frühen Embryogenese des Zebrafischs untersucht. H3K4me3 ist eine Chromatinmodifikation, die mit aktiver Transkription in Verbindung gebracht wird. H3K4me3 ist an Transkriptions-Start-Stellen von aktiv ausgelesenen Genen angereichert und es wird vermutet, dass diese Modifikation das Binden von Transkriptionsfaktoren und der Transkriptionsmaschinerie erleichtert. Während meiner Arbeit habe ich durch Mutation verschiedener Histon-Methyltransferasen beziehungsweise die Überexpression eines dominant-negativen Histonsubstrats versucht, die Etablierung von H3K4me3 in frühen Entwicklungsstadien des Zebrafischs zu verhindern. Anschliessend habe untersucht, welchen Effekt H3K4me3-Reduktion auf Tranksriptionsaktivität entsprechender Gene hat. Allerdings konnte ich keinen Zusammenhang zwischen H3K4me3-Reduktion und Transkriptionsaktivität beobachten. Um herauszufinden, weshalb H3K4me3 dennoch während früher Embryonalstadien etabliert wird, habe ich nachfolgend untersucht, ob möglicherweise bestimmte DNASequenzen oder Chromatin-Modifikationen zur Etablierung von H3K4me3 wahrend der Embryogenese des Zebrafischs beitragen.
Aus der hier vorliegenden Arbeit lässt sich schlussfolgern, dass H3K4me3 in Tranksriptionsaktivierung während früher Embryonalstadien des Zebrafischs nicht involviert ist. Möglicherweise wird H3K4me3 in diesen Stadien in einer permissiven Chromatinumgebung etabliert, bevorzugt an Promotoren mit starker H2A.z-Anreicherung und CpG-reichen DNA-Elementen.:Frontmatter II
Acknowledgements VII
Thesis Summary (English) IX
Thesis Summary (German) X
Table of Contents XIV
List of Figures XVI
List of Tables XVII
List of Abbreviations XXIII
1 Introduction 1
1.1 Transcription regulation 2
1.1.1 Promoter elements - genetic information that guides transcription initiation 2
1.1.2 Enhancers - fine-tuning of transcription by distal DNA elements 3
1.1.3 CpG islands - DNA sequences that allow for epigenetic regulation 4
1.2 Chromatin 4
1.2.1 Histone variants 7
1.2.2 Posttranslational histone modifications 7
1.2.3 Histone Lysine methylation 8
1.2.4 H3K4me3 in embryonic development 10
1.3 Establishment and removal of H3K4me3 10
1.3.1 Set1 homologs - Set1a and Set1b 11
1.3.2 Trithorax homologs - Mll1 and Mll2 11
1.3.3 Homologs of Trithorax-related - Mll3 and Mll4 13
1.3.4 COMPASS complex proteins 13
1.3.5 H3K4me3 removal 14
1.4 Transcription activation in embryos 14
1.4.1 Zebrafish early embryonic development 15
1.4.2 H3K4me3 during early zebrafish development 17
1.5 Thesis aim 17
2 Materials and Methods 19
2.1 Materials 19
2.2 Methods 36
2.2.1 Zebrafish husbandry and care 36
2.2.2 Generation of zebrafish knock-out lines by TALEN mutagenesis 36
2.2.3 Generation of plasmids for mRNA production 38
2.2.4 Microinjection 39
2.2.5 Germline transplantation 39
2.2.6 Western Blot Assays 40
2.2.7 RNA extraction and quantification assays 41
2.2.8 Chromatin immunoprecipitation (ChIP) 43
2.3 Bioinformatics Analyses 46
2.3.1 Quality control, alignment and peak calling 46
2.3.2 Lambda normalization 46
2.3.3 Differential ChIP enrichment analysis 47
2.3.4 Data integration 47
2.3.5 Gene classification 48
3 Results I: H3K4me3 interference by Histone methyltransferase mutation 49
3.1 Generation and phenotypic description of histone methyl-transferase mutants 49
3.1.1 HMT TALEN mutagenesis workflow 49
3.1.2 Ash2l TALEN mutation does not result in a larval or adult phenotype 52
3.1.3 Mll2 mutation results in increased larval mortality, while adult fish are healthy and fertile 54
3.1.4 Mll1 mutation results in increased larval mortality and a severe adult phenotype 56
3.2 HMT mutations do not affect global H3K4me3 levels in early zebrafish embryos 60
3.3 Mll1 mutation results in local H3K4me3 reduction of a small subset of genes 62
3.4 Early embryonic transcription is not altered in mll1 maternal-zygotic mutants 67
3.5 Conclusion 70
4 Results II: H3K4me3 interference by introduction of HMT inhibitors 71
4.1 Establishing a Western Blot assay to monitor H3K4me3 reduction 71
4.2 Overexpression of H3K4-specific histone demethylases does not result in global H3K4me3 reduction 73
4.3 Global reduction of H3K4me3 could not be achieved by small-molecule inhibition of HMT activity 75
4.4 Overexpression of K4-specific methylation-defective H3 results in global H3K4me3 reduction 76
4.4.1 Overexpression of H3K4-to-E constructs does not affect global H3K4me3 establishment 76
4.4.2 H3K4-to-M constructs act as dominant-negative substrate for H3K4me3 establishment 77
4.5 H3K4me3 levels at gene promoters are reduced upon introduction of
methylation-defective Histone H3 79
4.6 Early transcription activation is not altered upon K4M overexpression 88
4.7 Conclusion 92
5 Results III: Promoters rich in CpG and H2A.z gain H3K4me3 early 93
5.1 H3K4me3 levels increase over developmental time at all gene classes 93
5.2 H3K4me3 is gained at CpG-rich elements 98
5.3 H2A.z marks overlaps with H3K4me3 at promoters of non-transcribed genes 100
5.4 High CpG density and H2A.z enrichment are predictive for H3K4me3 establishment 101
5.5 Maternally provided genes are enriched for H2A.z and CpG content 103
5.6 Conclusion 104
6 Discussion 105
6.1 Neither Mll1 nor Mll2 are the main histone methyltransferase for H3K4me3 establishment in early zebrafish development 106
6.2 H3K4me3 reduction does not affect transcription initiation during genome activation 107
6.3 The timing of H3K4me3 establishment might be determined by a permissive chromatin state 109
6.4 H3K4me3 potentially gains importance during later developmental stages 111
6.5 CpG-content and H2A.z enrichment might be predictive for H3K4me3 establishment during genome activation 112
6.6 Conclusion 115
Appendix 117
Bibliography 139
Authorship Declaration 159
|
434 |
The Role of CHD2 in Mammalian Development and Disease: a DissertationMarfella, Concetta G. A. 20 March 2007 (has links)
Chromatin structure is intricately involved in the mechanisms of eukaryotic gene regulation. In general, the compact nature of chromatin blocks DNA accessibility such that components of the transcriptional machinery are unable to access regulatory sequences and gene activation is repressed. These repressive effects can be overcome or augmented by the actions of chromatin remodeling enzymes. Numerous studies highlight two classes of these enzymes: those that covalently modify nucleosomal histones and those that utilize energy derived from ATP hydrolysis to destabilize the histone-DNA contacts within the nucleosome (13, 14, 92). Members of each of these groups of chromatin remodeling enzymes play pivotal roles in modulating chromatin structure and in facilitating or blocking the binding of transcription factors. Mutations in genes encoding these enzymes can result in transcriptional deregulation and improper protein expression. Therefore, the regulation of chromatin structure is critical for precise regulation of almost all aspects of gene expression. Consequently, enzymes regulating chromatin structure are important modulators of cellular processes such as cell viability, growth, and differentiation. There remain many uncharacterized members of the ATP-dependent class of remodeling enzymes; characterization of these proteins will further elucidate the cellular functions these enzymes control.
Here, we focus primarily on the ATP-dependent remodeling complexes, specifically the chromodomain helicase DNA-binding (CHD) family. The CHD proteins are distinguished from other ATP-dependent complexes by the presence of two N-terminal chromodomains that function as interaction surfaces for a variety of chromatin components. These proteins also contain a SNF2-like ATPase motif and are further classified based on the presence or absence of additional domains. Genetic, biochemical, and structural studies demonstrate that CHD proteins are important regulators of transcription and play critical roles during developmental processes. Numerous CHD proteins have also been implicated in human disease.
The first CHD family member, mChd1, was identified in 1993 in a search for DNA-binding proteins with an affinity for immunoglobin promoters. Since then, additional CHD genes have been identified based on sequence and structural homology to mChd1. Despite an increase in the number of studies relating to CHD proteins, the function of most remains unknown or poorly characterized. Using embryonic stem (ES) cells containing an insertional mutation in the murine Chd2 locus, we generated a Chd2-mutant mouse model to address the biological effects of Chd2 in development and disease. The targeted Chd2 allele resulted in a stable Chd2-βgeo fusion protein that contained the tandem chromodomains, the SNF2-like ATPase motif, but lacked the C-terminal portion of the DNA-binding domain.
We demonstrated that the mutation in Chd2 resulted in a general growth delay in homozygous mutants late in embryogenesis as well as perinatal lethality. Similarly, heterozygous mice showed a decreased neonatal viability. Moreover, the surviving heterozygous mice showed a general growth delay during the neonatal period and increased susceptibility to non-neoplastic lesions affecting multiple organs, most notably the kidneys.
We further examined the connection between Chd2 and kidney disease in this murine model. Our findings revealed that the kidney phenotype observed in Chd2 mutant mice led to the development of membranous glomerulopathy, proteinuria, and ultimately to impaired kidney function. Additionally, serum analysis revealed decreased hematocrit levels in the Chd2-mutant mice, suggesting that the membranous glomerulopathy observed in these mice is associated with anemia.
Lastly, we investigated whether the type of anemia observed in the Chd2-mutant mice. Red blood cell (RBC) indices and morphological examination of the RBCs indicated that the anemia seen in the Chd2-mutant mice can be classified as normocytic and normochromic. Further analyses have been initiated to determine if the anemia is due to an intrinsic effect in erythropoiesis or a secondary consequence of the glomerular disease.
In summary, our findings have contributed to our understanding of the putative chromatin remodeling enzyme Chd2. Although much remains to be studied, these findings demonstrate a role for Chd2 in mammalian development and have revealed a link between Chd2 and disease.
|
435 |
Facilitating the Study of Chromatin Organization with Deep LearningPlummer, Dylan 02 June 2020 (has links)
No description available.
|
436 |
Roles of H2A.z in Fission Yeast ChromatinSAKALAR, Cagri 13 November 2007 (has links)
Covalent histone modifications such as methylation, acetylation as well as differential incorporation of histone variants are shown to coincide with different chromatin compartments and mark active or repressed genes. Msc1 is one of the seven JmjC Domain Proteins (JDPs) in Fission Yeast. JDPs are known to function in chromatin and some act as histone demethylases. We found that Msc1 is a member of Swr1 Complex which is known to exchange histone H2A variant H2A.z in nucleosomes. We purified H2A.z as a member of Swr1 Complex and its interaction with Swr1 Complex depends on Swr1. We’ve shown that histone H4 Lysine 20 trimethylation (H4 K20 Me3) is lost in h2A.z and msc1 deletion strains and these strains are sensitive to UV. Deletion strain of h2A.z is sensitive to Camptothecin. Histones H3 and H4 are obtained in Msc1 and H2A.z purifications and we’ve shown that histone H4 from these purifications has low level of Lysine 16 acetylation (H4 K16 Ac). Deletion strains of h2A.z, swr1 and msc1 are shown to be sensitive to TSA, a histone deacetylase (HDAC) inhibitor suggesting that H2A.z cooperates with HDACs. TSA treatment of wild type cells cause an increase in H4 K16 Ac and a decrease in H4 K20 Me3. Gene expression profiles of h2A.z, swr1 and msc1 are significantly similar and upregulated genes in deletion strains localize at chromosome ends (a region of 160 kb for each end). The number of stress or meiotic inducible genes is increased in deletion strains suggesting that H2A.z has a role in regulation of inducible genes. We suggest that H2A.z, in cooperation with HDACs, functions in regulation of chromatin accessibility of inducible promoters.
|
437 |
Dynamics of 3D chromatin landscapes during sex determinationMota Gómez-Argenté, Irene 23 May 2024 (has links)
Die Geschlechtsbestimmung bei Säugetieren erfolgt über gegensätzliche Netzwerke von ovariellen und testikulären Genen, die recht gut charakterisiert sind. Die epigenetischen Mechanismen, insbesondere diejenigen, die die 3D-Chromatinorganisation beeinflussen, sind jedoch größtenteils unbekannt. Ich habe die 3D-Chromatinlandschaft der Geschlechtsbestimmung in vivo untersucht, indem ich FACS-sortierte embryonale Mausgonadenpopulationen vor und nach der Geschlechtsbestimmung in beiden Geschlechtern analysierte. Dabei wurde eine begrenzte Variation in der dreidimensionalen Chromatindynamik beobachtet, insbesondere bei den Topologically Associating Domains (TADs). Konventionelle Hi-C-Analysemethoden sind hauptsächlich auf vordefinierte 3D-Strukturen ausgerichtet und könnten potenziell andere Veränderungen in der Chromatinorganisation übersehen, die für die Genregulation relevant sein könnten. Um diese Einschränkungen zu überwinden, wurde METALoci eingesetzt - ein innovatives Werkzeug, das Hi-C- und ChIP-seq-Daten integriert und räumliche Autokorrelationsanalyse nutzt, um dreidimensionale Enhancer-Hubs im gesamten Genom zu identifizieren. METALoci zeigte eine deutliche Umverdrahtung von Chromatininteraktionen während der Geschlechtsbestimmung, die die regulatorischen Landschaften von Hunderten von Genen beeinflusste. Darüber hinaus führte die Vorhersagekraft von METALoci in Kombination mit funktionalen Validierungen an transgenen Mäusen zur Identifizierung eines neuen Fgf9-regulatorischen Hubs. Die Deletion dieses Hubs führte zu teilweisem Geschlechtsumkehr von männlich zu weiblich, mit einer Hochregulierung ovarieller spezifischer Marker und der Einleitung der Meiose. So erweist sich die räumliche Autokorrelationsanalyse als eine effektive Strategie zur Identifizierung von regulatorischen Netzwerken, die mit biologischen Prozessen verbunden sind, und zur anschließenden Charakterisierung der funktionalen Rolle des dreidimensionalen Genoms. / Mammalian sex is determined by opposing networks of ovarian and testicular genes that
are relatively well characterized. Yet, the epigenetic mechanisms governing sex determi-
nation, in particular those involving 3D chromatin organization, remain largely unknown.
This gap of knowledge constrains our understanding of a fundamental process for species
reproduction and perpetuation. Here, I explored the 3D chromatin landscape of sex deter-
mination in vivo, by profiling FACS-sorted embryonic mouse gonadal populations, prior
and after sex determination, in both sexes. Using conventional Hi-C analysis tools, limited
variation in the 3D chromatin dynamics was observed, especially at the level of Topolog-
ically Associating Domains (TADs). This contrasts with the broad transcriptional differ-
ences occurring during sex determination. Yet, conventional Hi-C analysis methodologies
are largely focused on predefined 3D structures, potentially overlooking other types of
changes in chromatin organization that might be relevant for gene regulation. To ad-
dress these limitations, METALoci was applied- an innovative tool that integrates Hi-C
and ChIP-seq data and relies on spatial auto-correlation analysis to identify 3D enhancer
hubs distributed throughout the genome. METALoci uncovered a prominent rewiring
of chromatin interactions during sex determination, affecting the regulatory landscapes
of hundreds of genes. Furthermore, METALoci ’s predictive capacity, in combination with
functional validations in transgenic mice led to the identification of a novel Fgf9 regulatory
hub, which deletion resulted in partial male-to-female sex reversal with the upregulation of ovarian-specific markers and the initiation of meiosis. Thus, spatial auto-correlation anal-
ysis proves to be an effective strategy to identify regulatory networks linked to biological
processes and to subsequently characterize the functional role of the 3D genome.
|
438 |
Vývoj myšího modelu pro studium chromatin remodelačního genu Smarca5 (Snf2h) / Generation of the Mouse Model to Delineate Function of Chromatin Remodeling Gene Smarca5 (Snf2h)Turková, Tereza January 2016 (has links)
The chromatin structure, consisting of DNA and histones, changes dynamically during the cell cycle and cell differentiation. DNA can only be transcribed and replicated when it is packaged loosely, whereas tight packaging allows for more efficient storage. Chromatin remodelling is therefore one of the tools of gene expression control. The chromatin remodelling factors recognise chromatin with varying specificity and have an effect on the interaction between DNA and the histones. One of these factors is the Smarca5 protein. This study investigates the role of Smarca5; its goal is to create a mouse model with the ability to trigger Smarca5 overproduction in specific tissues. This model will be used to study the effect of a high, unregulated dose of Smarca5 on the physiological function of the protein. Previous studies have shown that non-physiological expression of a chromatin-remodelling factor can lead to malignant transformation. Our model can help to understand this process. Another goal of this study is to investigate some phenotype aspects of the mouse model with conditional deletion of Smarca5 in T and B cells, in particular the effects of this deletion on progenitor cell differentiation. Our results show that Smarca5 has an important role in lymphocyte development, and we have observed that...
|
439 |
Chromatin assembly by CAF-1 during homologous recombination : a novel step of regulation / Nouveau mécanisme de régulation de la recombinaison homologue par le complexe d'assemblage des nucléosomes caf-1Pietrobon, Violena 14 December 2012 (has links)
La réplication des chromosomes est altérée par les facteurs endogènes et/ou exogènes qui perturbent la progression des fourches de réplication. Les cellules doivent donc coordonner la synthèse d’ADN avec des mécanismes assurant la stabilité et le rétablissement des fourches bloquées. La recombinaison homologue (RH) est un mécanisme universel qui permet la réparation de l’ADN et participe au maintien de la réplication des chromosomes. Néanmoins, les mécanismes qui régulent la RH, notamment la RH ectopique versus la RH allélique, restent mal compris. Un autre mécanisme essentiel assurant la stabilité des génomes est l’assemblage de l’ADN néo-synthétisé autour de nucléosomes, conduisant à la constitution de fibres chromatiniennes nécessaires à l’organisation structurale du matériel génétique. Chez Saccharomyces cerevisiae, des défauts d’assemblage de la chromatine conduisent à une instabilité des fourches de réplication et augmentent le taux de RH. Sachant que les chaperonnes d’histones jouent un rôle crucial durant l’assemblage de la chromatine, j'ai décidé de me concentrer sur le rôle de la chaperonne d’histones H3-H4 appelé Chromatin Assembly Factor 1 (CAF-1) dans les mécanismes de RH, chez Schizosaccharomyces pombe. En effet, la RH est associée à une étape de synthèse de l’ADN, et peu de choses sont connues sur l’assemblage de la chromatine au cours de cette synthèse. Mes résultats ont exclu un rôle de CAF-1 dans la recombinaison allelique et le maintien de la stabilité des fourches de réplication. Par contre, CAF-1 joue un rôle important dans les mécanismes de recombinaisons ectopique et dans la formation de réarrangements chromosomiques induits par des blocages de fourches. Mes données suggèrent un modèle selon lequel CAF-1 permet la stabilisation d’intermédiaires de recombinaison précoces (D-loop), via le dépôt de nucleosomes au cours de l’extension par polymérisation de ces intermédiaires. Ainsi CAF-1 neutralise la dissociation des intermédiaires de recombinaison précoces par l’ADN helicase Rqh1. CAF-1 ferait partie d'un équilibre qui règle la stabilité/dissociation des intermédiaires de recombinaison précoces. J'ai montré que le rôle de CAF-1 dans cet équilibre a une importance toute particulière pendant la recombinaison non-allelique, révélant ainsi un nouveau niveau de régulation des mécanismes de RH par l'assemblage de la chromatine. / The replication of chromosomes can be challenged by endogenous and environmental factors, interfering with the progression of replication forks. Therefore, cells have to coordinate DNA synthesis with mechanisms ensuring the stability and the recovery of halted forks. Homologous recombination (HR) is a universal mechanism that supports DNA repair and the robustness of DNA replication. Nonetheless, mechanisms regulating HR pathways, such as ectopic versus allelic recombination, remain poorly understood. Another essential pathway for genome stability is the wrapping of newly replicated DNA around nucleosomes, leading to the constitution of a chromatin fibre, which allows the structural organization of the genetic material. In Saccharomyces cerevisiae, deficiencies in chromatin assembly pathways lead to replication forks instability and consequent increase in the rate of HR. Histone chaperones play a crucial role during chromatin assembly, thus I decided to focus on the H3-H4 histone chaperone Chromatin Assembly Factor 1 (CAF-1), to study its role in HR processes in Schizosaccharomyces pombe. Indeed, HR includes a DNA synthesis step and little is known about the associated chromatin assembly. My data excluded a role for CAF-1 in allelic recombination and in the maintenance of forks stability. However, CAF-1 was found to play an important role during ectopic recombination, in promoting chromosomal rearrangements induced by halted replication forks. My data support a model according to which CAF-1 allows the stabilization of early recombination intermediates (D-loop), via nucleosome deposition during the elongation of these intermediates. Doing so, CAF-1 counteracts the dissociation of early recombination intermediates by the helicase Rqh1. Therefore, CAF-1 appears to be part of an equilibrium that regulates stability/dissociation of early steps of recombination events. Importantly, I found that the role of CAF-1 in this equilibrium is of particular importance during non-allelic recombination, revealing a novel regulation level of HR mechanisms and outcomes by chromatin assembly.
|
440 |
Biochemical and functional differences of chromatin assembled replication-coupled or independent in Xenopus laevis egg extracts / Biochemische und funktionelle Unterschiede von Chromatin assembliert replikationsabhängig oder -unabhängig in Xenopus laevis EiextraktenStützer, Alexandra 07 June 2011 (has links)
No description available.
|
Page generated in 0.0678 seconds