• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 11
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The synthesis and characterization of reversed phase stationary phases for high performance liquid chromatography

Barnes, Karen Wink. January 1986 (has links)
Thesis (Ph. D.)--University of Florida, 1986. / Description based on print version record. Typescript. Vita. Includes bibliographical references (leaves 156-161).
22

Enzyme immunoassay in combination with liquid chromatography for sensitive and selective determination of drugs in biosamples

Lövgren, Ulf. January 1997 (has links)
Thesis (doctoral)--Lund University, 1997. / Added t.p. with thesis statement inserted.
23

Enzyme immunoassay in combination with liquid chromatography for sensitive and selective determination of drugs in biosamples

Lövgren, Ulf. January 1997 (has links)
Thesis (doctoral)--Lund University, 1997. / Added t.p. with thesis statement inserted.
24

Affinity chromatographic purification of recombinant human growth hormone

Balci, Oguz 01 February 2008 (has links) (PDF)
The purpose of the study is to purify human growth hormone from the fermentation broth by affinity chromatography. For this purpose, human growth hormone specific oligonucleotide aptamers are selected among an aptamer library / selected oligonucleotides were synthesized and used as ligands. Effect of pH on ligand-human growth hormone complex formation was investigated and the highest complex formation was obtained at pH= 7.0. Human growth hormone is separated from the fermentation broth with 99.8% purity and 41% overall yield. The equilibrium data obtained was described by Langmuir type isotherm where saturation constant (q0) and affinity constant (K) are calculated as 0.338 mg hGH/&micro / mol aptamer and 0.059 mg hGH/ml, respectively. Further, equilibrium data obtained using aptamer affinity column was described by Langmuir type isotherm where saturation constant (q0) and affinity constant (K) are 0.027 mg hGH/&micro / mol aptamer and 1.543 mg hGH/ml, respectively. It is possible that, selected aptamer can be used for purification of bulk amounts of recombinant human growth hormone by using aptamer affinity chromatography.
25

To study the pharmacokinetics of cyclosporine A in Hong Kong Chinese stable renal transplant patients by a rapid and simple liquid chromatography tandem mass spectrometry.

January 2002 (has links)
Law Wai Keung. / Thesis (M.Sc.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 98-108). / Abstracts in English and Chinese. / Abstract --- p.v / 摘要 --- p.viii / Acknowledgement --- p.x / List of Abbreviations --- p.i / Index of tables --- p.xiv / Index of figures --- p.xv / Chapter 1. --- Introduction --- p.1 / Chapter 2. --- Literature review --- p.3 / Chapter 2.1 --- Immunosuppression in Organ Transplantation --- p.3 / Chapter 2.2 --- Mechanism of Graft Rejection --- p.4 / Chapter 2.3 --- Conventional immunosuppressive drugs --- p.4 / Chapter 2.3.1 --- Corticosteriod --- p.6 / Chapter 2.3.2 --- Azathioprine --- p.6 / Chapter 2.3.3 --- Polyclonal antilymphocyte globulin and OKT3 --- p.7 / Chapter 2.4 --- Cyclosporine A (CsA) --- p.8 / Chapter 2.4.1 --- Mechanisms of CsA --- p.8 / Chapter 2.4.2 --- Pharmacokinetics of CsA --- p.10 / Chapter 2.4.2.1 --- Absorption --- p.10 / Chapter 2.4.2.2 --- Distribution --- p.11 / Chapter 2.4.2.3 --- Metabolism and elimination --- p.11 / Chapter 2.4.2.4 --- Toxicity --- p.12 / Chapter 2.4.3 --- Therapeutic drug monitoring of CsA --- p.13 / Chapter 2.4.3.1 --- CsA trough monitoring --- p.13 / Chapter 2.4.3.2 --- Full AUC monitoring --- p.15 / Chapter 2.4.3.3 --- Limited sampling strategy --- p.16 / Chapter 2.4.3.4 --- Two-hour post dose CsA level monitoring --- p.20 / Chapter 2.4.4 --- Conventional techniques of measuring cyclosporine concentration --- p.23 / Chapter 2.4.4.1 --- High performance liquid chromatography --- p.23 / Chapter 2.4.4.2 --- Non-specific immunoassays --- p.25 / Chapter 2.4.4.3 --- Specific radioimmunoassays --- p.26 / Chapter 2.4.4.4 --- Specific fluorescent polarization immunoassay --- p.26 / Chapter 2.4.4.5 --- Enzyme multiplied immunoassay technique --- p.28 / Chapter 2.4.4.6 --- Cloned enzyme donor immunoassay --- p.29 / Chapter 2.4.4.7 --- Summary for conventional techniques --- p.29 / Chapter 2.5 --- Liquid chromatography mass spectrometry for CsA measurement --- p.30 / Chapter 2.5.1 --- Main components of MS --- p.31 / Chapter 2.5.1.1 --- Specific interfaces to LC --- p.31 / Chapter 2.5.1.2 --- Mass analyzer --- p.33 / Chapter 2.5.1.3 --- Electron multiplier --- p.36 / Chapter 2.5.2 --- Sample preparation for LC-MS/MS for CsA measurement --- p.36 / Chapter 2.5.2.1 --- Liquid-liquid extraction --- p.37 / Chapter 2.5.2.2 --- Solid phase extraction --- p.38 / Chapter 2.5.2.3 --- Column switching --- p.39 / Chapter 2.5.2.4 --- Dilute and shoot --- p.40 / Chapter 2.5.3 --- LC-MS/MS for CsA measurement --- p.40 / Chapter 2.6 --- Summary --- p.42 / Chapter 3. --- Aim of study --- p.43 / Chapter 4. --- Materials and methods --- p.44 / Chapter 4.1 --- Materials --- p.44 / Chapter 4.1.1 --- Chemicals --- p.44 / Chapter 4.1.2 --- Equipment --- p.44 / Chapter 4.1.3 --- Reagent preparation for CsA analysis --- p.45 / Chapter 4.2 --- Methods --- p.48 / Chapter 4.2.1 --- Immunoassay --- p.48 / Chapter 4.2.2 --- Operation of tandem mass spectrometer --- p.48 / Chapter 4.2.2.1 --- Optimization of cone voltage --- p.50 / Chapter 4.2.2.2 --- Optimization of collision energy --- p.50 / Chapter 4.2.3 --- Optimization of LC-MS/MS --- p.51 / Chapter 4.2.3.1 --- Deproteinization procedures of whole blood --- p.52 / Chapter 4.2.3.2 --- Optimization of mobile phase flow rate --- p.52 / Chapter 4.2.3.3 --- Optimization of source temperature --- p.53 / Chapter 4.2.3.4 --- Optimization of the drying gas flow rate --- p.53 / Chapter 4.2.4 --- Matrix interference on MS/MS response --- p.53 / Chapter 4.2.5 --- Analytical performance of CsA on LC-MS/MS --- p.54 / Chapter 4.2.5.1 --- Linearity study --- p.54 / Chapter 4.2.5.2 --- Precision performance --- p.54 / Chapter 4.2.5.3 --- Accuracy performance --- p.54 / Chapter 4.2.5.4 --- The lowest detection limit of the CsA analysis --- p.55 / Chapter 4.2.5.5 --- Correlation study of the CsA analysis --- p.55 / Chapter 4.3 --- CsA pharmacokinetic studies in Chinese patients --- p.56 / Chapter 4.3.1 --- Determining the time point of CsA correlating better with AUC --- p.56 / Chapter 4.3.1.1 --- Patient and method --- p.56 / Chapter 4.3.1.2 --- Statistical analysis --- p.57 / Chapter 4.3.2 --- "Intra-individual variability of CO, C1 and C2" --- p.57 / Chapter 4.3.2.1 --- Patient and method --- p.57 / Chapter 4.3.2.2 --- Statistical analysis --- p.57 / Chapter 5. --- Results and discussion --- p.59 / Chapter 5.1 --- Optimization of MS parameters --- p.5 9 / Chapter 5.1.1 --- Optimization of cone voltage --- p.61 / Chapter 5.1.2 --- Optimization of collision energy --- p.63 / Chapter 5.2 --- Optimization of LC-MS/MS --- p.63 / Chapter 5.2.1 --- Optimization of mobile phase flow rate --- p.63 / Chapter 5.2.2 --- Optimization of ion source temperature and drying gas flow rate --- p.67 / Chapter 5.3 --- Matrix interference on MS/MS response --- p.69 / Chapter 5.4 --- Analytical performances of CsA on LC-MS/MS method --- p.71 / Chapter 5.4.1 --- Linearity --- p.71 / Chapter 5.4.2 --- Precision performance --- p.71 / Chapter 5.4.3 --- Accuracy performance --- p.72 / Chapter 5.4.4 --- The lowest limit of detection --- p.73 / Chapter 5.4.5 --- Correlation study of the CsA analysis --- p.80 / Chapter 5.5 --- The correlation between CsA at different point and AUCo-6 --- p.84 / Chapter 5.6 --- "Intra-individual variability of CO, C1 and C2" --- p.88 / Chapter 5.7 --- Therapeutic ranges of C2 --- p.90 / Chapter 5.8 --- Practical consideration for C2 measurement by LC-MS/MS method --- p.94 / Chapter 6. --- Conclusions --- p.97 / References --- p.98
26

Applications of mass spectrometry in clinical chemistry and biomedical research

Aguiar, Mike. January 2007 (has links)
Note: / Clinical chemistry is a medical discipline whose aim is to diagnose and assess disease by analysis of biological specimens. Modem laboratories can perform several hundred different tests using many different methods developed over the last century. The classical, more traditional assays are typically labour-intensive, not multiplexed (only measure one analyte or disorder per assay), expensive, require a long turnaround time, and may not provide adequate sensitivity and specificity. Developments in mass spectrometry (MS) and related technologies over the last two decades have provided solutions for many if not all of these shortcomings. While MS based applications have not yet been widely implemented in clinical chemistry laboratories, current developments will encourage the replacement of traditional methods as well as the expansion of clinically diagnostic endpoints. Indeed, modem MS can be used to simultaneously analyze and quantitate multiple biomarkers in a single analysis. Currently, no other technique exists that can provide a comparable multiplexed analysis. In this thesis, current MS and related technologies were developed and applied to several important but distinct clinical chemistry applications. [...] / La chimie clinique est une discipline medicale qui a pour but de diagnostiquer la presence et la progression d'une maladie par l'analyse d'echantillons biologiques. Les laboratoires modemes peuvent executer des centaines d'analyses en utilisant plusieurs methodes developpees au courrant des cent demieres annees. Les essaisc1assiques, et plus traditionnels, sont souvent laborieux, non multiplexe (mesurent seulement un analyte par essai), cher, exige un long temps de rotation et risque de ne pas fournir une specificite adequate. Pendant les deux dernieres decennies, les developpements dans Ie domaine de la spectrometrie de masse (MS) et les technologies rattachees ont foumi des solutions a plusieurs, pour ne pas dire tous, manques retrouves dans les methodes d'analyse traditionnelles.
27

Determinação do perfil farmacocinético de anti-inflamatórios não hormonais aplicados à clinica / Determination of the pharmacokinetic profile of the non-steroidal anti-inflammatory drugs related with clinic outcomes

Rigato, Hamilton Modesto, 1977- 08 December 2011 (has links)
Orientador: Ney Carter do Carmo Borges / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas / Made available in DSpace on 2018-08-18T22:09:06Z (GMT). No. of bitstreams: 1 Rigato_HamiltonModesto_D.pdf: 6113608 bytes, checksum: 50f727cd3e6ffa2e40c62a248f3e7fea (MD5) Previous issue date: 2011 / Resumo: Objetivo: O presente trabalho teve por objetivo avaliar o perfil farmacocinético do diclofenaco de colestiramina (cápsula de 140mg) e de duas apresentações farmacêuticas (comprimidos 100mg e suspensão oral 50mg/mL) de nimesulide realizado em voluntários sadios de ambos os sexos e relacioná-los aos desfechos clínicos em enzimas do painel hepático e da contagem de plaquetas. Materiais e métodos: Os estudos foram do tipo aberto, aleatório, cruzado, em dois períodos. As amostras de sangue foram analisadas em cromatografia líquida de alta eficiência acoplada, a um detector de ultravioleta (UV) para o primeiro fármaco, e a um espectrômetro de massa (EM/EM) para outro. Os valores séricos do painel hepático e contagem de plaquetas foram comparados pré e pós-medicação. Resultados: As razões geométricas e respectivos 90% do IC para a cápsula de diclofenado de colestiramina/Flotac® 140 mg foram 100.22% (84.99 - 118.19%) para a CMAX e 90,53% (82.86-98.91%) para a ASCULTIMO. Os valores para o comprimido de Nimesulide/Nisulid® 100mg foram 85.96% (77.54 - 95.30%) para a CMAX e 93.91% (84.42 - 104.46%) para a ASCULTIMO, e a formulação de suspensão oral de Nimesulide/Nisulid® 50mg/mL obteve 100.1% (91.05 - 110.15%) para CMAX e 107.7% (99.74 - 116.39%) para ASCULTIMO. Quanto ao desfecho clínico foi observada elevação significante no parâmetro de ALT para o diclofenaco de colestiramina e na formulação comprimido de nimesulide. A formulação de suspensão oral teve elevação significante para o parâmetro de ALP. Não foi observada diminuição na contagem de plaquetas. Conclusão: Considerando que 90% dos intervalos de confiança das razões de CMAX e ASCULTIMO, se encontram dentro de 80-125% do intervalo proposto pelo FDA e aceita pela ANVISA, concluiu-se que a formulação de cápsula de diclofenaco de colestiramina (140mg) e a formulação de suspensão oral (50mg/mL) de nimesulide são bioequivalentes em relação à taxa e extensão de absorção e que a formulação comprimido de nimesulide (100mg) não é bioequivalente ao Nisulid® com relação a taxa de absorção. Clinicamente os medicamentos se mostraram seguros mesmo apresentando alterações estatisticamente significantes nos parâmetros clínicos avaliados / Abstract: Objective: The present work aims to evaluation the pharmacokinetic profile of the diclofenac-cholestyramine (140mg capsule) and two pharmaceuticals formulations (100mg tablets and 50mg/m oral suspension) of nimesulide in healthy adult subjects related with clinic outcomes in the hepatic enzymes panel and platelet count. Method: The studies were open, randomized, simple crossover balanced with two periods. The blood samples were analyzed by high performance liquid chromatography coupled to ultraviolet detection in diclofenac formulations. For nimesulide a mass espectrometer was performed (MS/MS). Seric enzymes from liver panels and whole blood platelet count was compared with pre and post single dose treatment. Results: The geometric mean and 90% confidence intervals (CI) for the diclofenac-cholestyramine/Flotac® ratio were 100.22% (84.99 - 118.19%) for CMAX and 90,53% (82.86-98.91%) for AUCLAST. The geometric mean and 90% confidence intervals (CI) for the Nimesulide/Nisulid® 100mg tablet were 85.96% (77.54 - 95.30%) for CMAX and 93.91% (84.42 - 104.46%) for AUCLAST, and for the oral suspension 50mg/mL were 100.1% (91.05 - 110.15%) for CMAX and 107.7% (99.74 - 116.39%) for AUCLAST. For the hepatic enzyme panel was observed significant rise in the ALT for diclofenac-cholestyramine and nimesulide tablet. The oral suspension was significant rise in the ALP parameter (p<0.05). No platelet count decrease was observed. Conclusion: Since the 90% CI for CMAX and AUCLAST ratios were all inside the 80-125% interval proposed by the US Food and Drug Administration and accepted by ANVISA, it is concluded that the diclofenac-cholestyramine 140mg capsule and the nimesulide oral suspension formulation 50mg/mL are bioequivalent in regard to both extent and rate of absorption. The nimesulide 100mg tablet is not bioequivalent to Nisulid® 100mg tablet with respect to the rate of absorption. Clinically all the evaluated pharmaceuticals are safety despide the significant changes in the hepatic enzymes panel observed / Doutorado / Ciencias Basicas / Doutor em Clínica Médica
28

Stanovení těžkých polycyklických aromatických uhlovodíků v půdách a sedimentech / Determination of heavy polycyclic aromatic hydrocarbons in soils and sediments

Cáhová, Miroslava January 2008 (has links)
This diploma thesis will be focused on the identification and quantification of PAHs with molecular mass exceeding 278 Da by separation and spectrometric methods available at the laboratories of ICTEP.
29

Applications of mass spectrometry in clinical chemistry and biomedical research

Aguiar, Mike January 2007 (has links)
Note:
30

Uticaj soli žučnih kiselina na prodor i metabolizam simvastatina u probiotskim bakterijama / The influence of bile salts on simvastatin transport and metabolism in probiotic bacteria

Đanić Maja 15 September 2016 (has links)
<p>Interindividualne razlike u sastavu i aktivnosti crevne mikroflore mogu uticati na metabolizam lekova kao i na njihov konačan terapijski odgovor. Simvastatin je lek iz grupe statina i karakteri&scaron;e ga izuzetno mala rastvorljivost u vodi, mala bioraspoloživost (&lt;5%) i velike interindividualne razlike u terapijskom odgovoru čiji uzroci nisu u potpunosti obja&scaron;njeni. Poslednjih godina velika pažnja se posvećuje ispitivanjima žučnih kiselina u razvoju novih farmaceutskih formulacija zbog svoje uloge u solubilizaciji i modifikaciji prodora lekova kroz biolo&scaron;ke membrane. Zbog svega navedenog, u fokusu na&scaron;eg istraživanja su bile potencijalne interakcije između simvastatina, probiotskih bakterija i žučnih kiselina o kojima se vrlo malo zna, a od izuzetne su važnosti, zbog mogućeg uticaja na farmakokinetske i farmakodinamske osobine simvastatina, pa samim tim i na konačan terapijski odgovor kod pacijenta.Cilj istraživanja je bio da se ispita prodor i metabolizam simvastatina u probiotskim bakterijama kao i uticaj različitih žučnih kiselina na transport ovog leka u bakterijske ćelije. Takođe, cilj je bio da se ispita uticaj soli žučnih kiselina na distribucioni koeficijent simvastatina, kao i interakcije žučnih kiselina sa simvastatinom na nivou transportnih proteina probiotskih bakterija kako bi se objasnila priroda očekivanih interakcija.Identifikacija i kvantifikacija uzoraka vr&scaron;ena je metodom tečne hromatografije sa masenom spektrometrijom (LC-MS/MS). Kori&scaron;ćenjem programskih paketa VolSurf+ i Molinspiration, za identifikovane metabolite su izračunati molekulski deskriptori koji opisuju fizičko-hemijske i farmakokinetske osobine molekula. Određivanje distribucionog koeficijenta vr&scaron;eno je Shake-flask metodom. Interakcije žučnih kiselina sa simvastatinom na nivou transportnih proteina probiotskih bakterija ispitane su doking studijama pomoću SwissDock programa. Prilikom dvadesetčetvoročasovne inkubacije sa probiotskim bakterijama uočen je statistički značajan pad koncentracije simvastatina u ekstracelularnom sadržaju. Ukupan sadržaj simvastatina, kao zbir ekstracelulamog i intracelularnog sadržaja, je tokom čitavog ispitivanog perioda bio statistički značajno niži u odnosu na kontrolnu grupu bez probiotika navodeći na zaključak da se deo simvastatina tokom vremena metabolisao pod dejstvom enzima ispitivanih bakterija. Detektovano je i identifikovano 8 metaboličkih produkata simvastatina. Na osnovu izračunatih vrednosti molekulskih deskriptora, očekuje se da će metabolit M-452, koji predstavlja hidroksilovani produkt simvastatinske kiseline, pokazati najbolje rezultate u pogledu fizičko-hemijskih osobina i bioraspoloživosti u biolo&scaron;kom sistemu. Žučne kiseline nisu dovele do statistički značajne modifikacije transporta simvastatina u/iz probiotskih bakterija. Ipak, u nekim vremenskim tačkama primećena je ne&scaron;to veća koncentracija leka u ekstracelulamom prostoru u grupama sa žučnim kiselinama. Ove razlike se mogu delimično objasniti rezultatima određivanja distribucionog koeficijenta koji su pokazali da ispitivane žučne kiseline dovode do statistički značajnog smanjenja distribucionog koeficijenta simvastatina usled povećanja rastvorljivosti u vodenoj fazi. Rezultatima doking studija procenjeno je da ispitivane žučne kiseline imaju veći afinitet prema čak 80% multidrug transportera ispitivanih bakterija u odnosu na simvastatin &scaron;to govori o mogućnosti ostvarivanja interakcija žučnih kiselina sa ovim lekom na nivou transportnih proteina probiotskih bakterija. Na osnovu dobijenih rezultata možemo zaključiti da probiotske bakterije imaju ogroman uticaj na sudbinu simvastatina u biolo&scaron;kom sistemu. Uzimajući u obzir činjenicu da probiotske bakterije ulaze u sastav normalne crevne flore i da svaki organizam poseduje specifičan bakterijski sastav, trebalo bi posvetiti vi&scaron;e pažnje ispitivanju njegovog uticaja na farmakokinetiku lekova. Neophodna su dalja in vivo ispitivanja kako bi se utvrdila potencijalna farmakolo&scaron;ka aktivnost identifikovanih metabolita simvastatina nastalih pod dejstvom enzimske aktivnosti probiotskih bakterija. Povećanje rastvorljivosti simvastatina pomoću žučnih kiselina otvara mogućnost za dalja istraživanja u cilju razvoja novih farmaceutskih formulacija sa pobolj&scaron;anom bioraspoloživosti i farmakokinetskim osobinama.</p> / <p>Interindividual differences in the composition and activity of the gut microflora may affect the metabolism of drugs as well as their final therapeutic response. Simvastatin is drug from the group of statins and has extremely low water solubility, low bioavailability (&lt;5%) and high interindividual differences in therapeutic response whose causes are not fully understood. In recent years, great attention has been paid to studies of bile acids in the development of new pharmaceutical formulations because of their role in the drug solubilization and modification of drug transport through biological membranes. Accordingly, interactions between simvastatin, probiotic bacteria and bile acids were the focus of our research due to great importance and potential influence on the pharmacokinetic and pharmacodynamic properties of simvastatin, and therefore the final therapeutic response in the patients. The aim of the study was to investigate the simvastatin transport and metabolism in probiotic bacteria as well as the effect of various bile acids on drug transport into the bacterial cell. Additonally, the aim was to investigate the influence of bile salts on the distribution coefficient of simvastatin, and the interactions of bile acids with simvastatin at the level of probiotic transport proteins in order to elucidate the nature of expected interactions. Identification and quantification of samples were performed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Molecular descriptors that describe the physico-chemical and pharmacokinetic properties of identified metabolites were calculated using the software packages VolSurf+ and Molinspiration. Determination of the distribution coefficient was performed using Shake-flask method. Interaction of bile acids with simvastatin at the level of bacterial transport proteins were studied using docking studies with SwissDock program. During the twenty-four hours of incubation with probiotic bacteria, simvastatin concentrations in the extracellular contet showed a statistically significant decrease. The total amount of simvastatin, as the sum of the extracellular and intracellular amount, during the whole study period, was significantly lower in comparison with control group without probiotics, suggesting that the part of simvastatin was metabolized by the enzymatic activity of studied bacteria. Accordingly, eight metabolic products of simvastatin were detected and identified. Based on the calculated values of molecular descriptors, it is expected that the metabolite M-452, which is the hydroxylated product of simvastatin acid, will show the best results in terms of physico-chemical properties and bioavailability in biological system. Bile acids did not show a significant influence on simvastatin transport into probiotic bacteria. However, in some time points, slightly higher drug concentrations in the extracellular medium in groups with bile acids were observed. These differences can be partly explained by the results of the determination of the distribution coefficients which showed that investigated bile acids lead to a statistically significant decrease in simvastatin distribution coefficient due to increased solubility in the aqueous phase. The results of docking studies estimated that studied bile acids have stronger affinities for the 80% of bacterial multidrug transporters compared to simvastatin indicating the possibility of achieving the interactions of bile acids with simvastatin at the level of transport proteins of probiotic bacteria. Based on the obtained results it could be concluded that probiotic bacteria have great influence on the fate of simvastatin in a biological system. Taking into account the fact that probiotic bacteria are the normal part of gut microflora and that each individual has specific bacterial fingerprint, more attention should be paid on studying its influence on drug pharmakocinetics. Further in vivo studies are required in order to determine potential pharmacological activity of identified simvastatin metabolites. Increased water solubility of simvastatin with bile acids may open the possibility for further investigations with the aim of development of new pharmaceutical formulation with improved bioavailability and pharmacokinetic properties.</p>

Page generated in 0.0787 seconds