Spelling suggestions: "subject:"chromosomal"" "subject:"hromosomal""
121 |
Functional analysis of subtelomeric breakage motifs using yeast as a model organismKhuzwayo, Sabelo Lethukuthula 24 May 2011 (has links)
Genome wide studies have uncovered the existence of large-scale copy number variation (CNV) in the human genome. The human genome of different individuals was initially estimated to be 99.9% similar, but population studies on CNV have revealed that it is 12-16% copy number variable. Abnormal genomic CNVs are frequently found in subtelomeres of patients with mental retardation (MR) and other neurological disorders. Rearrangements of chromosome subtelomeric regions represent a high proportion of cytogenetic abnormalities and account for approximately 30% of pathogenic CNVs. Although DNA double strand breaks (DSBs) are implicated as a major factor in chromosomal rearrangements, the causes of chromosome breakage in subtelomeric regions have not been elucidated. But due to the presence of repetitive sequences in subtelomeres, we hypothesized that chromosomal rearrangements in these regions are not stochastic but driven by specific sequence motifs. In a collaborative effort with Dr. Rudd (Department of human genetics at Emory University), we characterized subtelomeric breakpoints on different chromosome ends in search of common motifs that cause double-strand breaks. Using a yeast-based gross chromosomal rearrangement (GCR) system, we have identified a subtelomeric breakage motif from chromosome 2 (2q SBM) with a GCR rate that is 340 fold higher than background levels. To determine if the fragility of 2q SBM was driven by the formation of secondary structures, the helicase activities of Sgs1 and Pif1 were disrupted. These helicases have been shown to destabilize DNA secondary structures such as G-quadruplex structures. Disruption of these helicases augmented chromosomal rearrangements induced by 2q SBM, indicating that these helicases are required for maintenance of this sequence. We also donwregulated replication fork components to determine if 2q SBM was imposing any problems to the replication fork machinery. Downregulation of replication fork components increased chromosomal rearrangements, indicating that intact replication fork was a critical determinant of 2q SBM fragility. Using a yeast-based functional assay, these experiments have linked human subtelomeric repetitive sequences to chromosomal breakage that could give rise to human CNV in subtelomeric regions.
|
122 |
Identification of polycomb group protein CBX8 as a novel tumor suppressor in human colorectal cancerLi, Hung-sing, 李鴻陞 January 2014 (has links)
Polycomb group (PcG) proteins governs the regulation of diverse cellular functions, such as cell fate decision, cell cycle progression, maintenance of embryonic stem cell pluripotency, and DNA damage repair. Although aberrant expression of PcG proteins has been frequently reported in different cancer types, CBX8 is one of the least studied PcG family members in cancer. Recently, a study showed that forced expression of CBX8 in normal human and mouse fibroblasts demonstrated that cells could bypass senescence via INK4a-ARF repression; while another report demonstrated that CBX8 was involved in MLL-AF9-linked leukemogenesis. Despite accumulating evidence on CBX8-related carcinogenic functions, the role of CBX8 in solid cancers has not been investigated thus far. This study is therefore initiated to investigate and establish the functional role of CBX8 in colorectal cancer.
In this study, expression of CBX8 in 121 pairs of human CRC samples was analyzed by immunohistochemistry; and data were correlated with different clinicopathological parameters. To evaluate the functional effects of CBX8, CBX8 overexpressed and downregulated clones were established from three CRC cell lines. The in vitro effects of CBX8 on cell proliferation, cell cycle progression and apoptosis profiles were investigated; and the effects of CBX8 on tumorigenicity in vivo were further demonstrated in mice xenograft models.
The results showed that CBX8 expression was downregulated or loss in approximately 48.8% of human colorectal tumors, and downregulated or loss of CBX8 expression were mainly observed in tumors with intermediate to later stages (stage II to IV). Moreover, expression of CBX8 showed a significant inverse correlation with colorectal tumor sizes (P < 0.0001). Ectopic expression of CBX8 in CRC cell lines resulted in inhibition of cell proliferation, clonogenic ability and anchorage-independent growth, which are hallmarks of tumorigenesis. Conversely, downregulation of CBX8 promoted proliferation and clonogenic ability. Moreover, it was found that restoring CBX8 expression could induce G0/G1 arrest of cell cycle. The tumor suppressive role of CBX8 in colorectal cells was further demonstrated in vivo through subcutaneous and orthotropic mice tumor models; followed by immuno-staining of the proliferation marker Ki-67. To unveil the possible mechanisms behind the tumor suppressing effects of CBX8, two signalling pathways commonly engaged in CRC were evaluated. At least part of the effects could be attributed to the mediation of MAPK signaling pathway; whereas the Wnt signalling was not affected by CBX8.
This study demonstrated for the first time the loss of CBX8 expression in intermediate and late stage tumors, and was the first to report the tumor suppressing ability of CBX8 in solid cancers. The effects of CBX8 in this study were different to the functional implications reported in the current literature. This functional divergence in distinct cell types suggested a dynamic role of CBX8 depending on specific cellular context. / published_or_final_version / Surgery / Master / Master of Philosophy
|
123 |
Genetic Alterations in Lymphoma : with Focus on the Ikaros, NOTCH1 and BCL11B GenesKarlsson, Anneli January 2008 (has links)
Cell proliferation is a process that is strictly regulated by a large number of proteins. An alteration in one of the encoding genes inserts an error into the regulative protein, which may result in uncontrolled cell growth and eventually tumor formation. Lymphoma is a cancer type originating in the lymphocytes, which are part of the body’s immune defence. In the present thesis, Znfn1a1, Notch1 and Bcl11b were studied; all involved in the differentiation of T lymphocytes. The three genes are located in chromosomal regions that have previously shown frequent loss of heterozygosity in tumor DNA. Ikaros is a protein involved in the early differentiation of T lymphocytes. In this thesis, mutation analysis of the Znfn1a1 gene in chemically induced murine lymphomas revealed point mutations and homozygous deletions in 13 % of the tumors. All of the detected deletions lead to amino acid substitutions or abrogation of the functional domains in the Ikaros protein. Our results support the role of Ikaros as a potential tumor suppressor in a subset of tumors. Notch1 is a protein involved in many differentiation processes in the body. In lymphocytes, Notch1 drives the differentiation towards a T-cell fate and activating alterations in the Notch1 gene have been suggested to be involved in T-cell lymphoma. We identified activating mutations in Notch1 in 39 % of the chemically induced murine lymphomas, supporting the involvement of activating Notch1 mutations in the development of T-cell lymphoma. Bcl11b has been suggested to be involved in the early T-cell specification, and mutations in the Bcl11b gene has been identified in T-cell lymphoma. In this thesis, point mutations and deletions were detected in the DNA-binding zinc finger regions of Bcl11b in 15 % of the chemically induced lymphomas in C57Bl/6×C3H/HeJ F1 mice. A mutational hotspot was identified, where four of the tumors carried the same mutation. Three of the identified alterations, including the hotspot mutation in Bcl11b, increased cell proliferation when introduced in a cell without endogenous Bcl11b, whereas cell proliferation was suppressed by wild-type Bcl11b in the same cell line. Mutations in Bcl11b may therefore be an important contributing factor to lymphomagenesis in a subset of tumors. A germ line point mutation was identified in BCL11B in one of 33 human B-cell lymphoma patients. Expression of BCL11B in infiltrating T cells was significantly lower in aggressive compared to indolent lymphomas, suggesting that the infiltrating T cells may affect the B-cell lymphomas.
|
124 |
Chromosomale Veränderungen astrozytärer Tumoren in der komparativen genomischen Hybridisierung (CGH) und deren prognostischer Einfluss / Chromosomal aberrations of astrocytic tumors detected by comparative genomic hybridization (CGH) and their prognostic influenceBürger, Tobias 12 March 2014 (has links)
Fortschritte in der molekulargenetischen Charakterisierung von Tumorerkrankungen haben in den letzten Jahren die klinische Praxis zunehmend beeinflusst. Das Ziel dieser Arbeit war die Untersuchung von astrozytären Tumoren der WHO-Grade II bis IV und ihre Subtypisierung anhand der gefundenen chromosomalen Aberrationen. Ferner sollte der Einfluss der gefundenen Aberrationen auf klinische Parameter wie das Gesamtüberleben oder die rezidivfreie Zeit untersucht werden.
Dazu wurden paraffinfixierte Proben von insgesamt 184 primären astrozytären Tumoren (28 low-grade Astrozytome, 6 low-grade Oligoastrozytome, 50 anaplastische Astrozytome, 4 anaplastische Oligoastrozytome, 96 Glioblastoma multiforme) mit der Comparativen Genomischen Hybridisierung (CGH) untersucht.
Häufige Aberrationen in allen Malignitätsgruppen stellten chromosomale Zugewinne auf Chromosom 7 sowie Verluste von Chromosom 10 und 9p dar. High-grade Astrozytome zeigten ferner häufig Zugewinne von Chromosom 19 und 20 sowie Verluste von 13q, 14q und 15q. WHO-Grad-II-Astrozytome wiesen häufig Zugewinne auf Chromosom 8 sowie Verluste von Chromosom 4q und 6q auf.
Eine kürzeres Gesamtüberleben zeigten high-grade Gliome mit Verlusten von Chromosom 10q und Zugewinnen auf 7p. In Glioblastomen verursachten zusätzlich Zugewinne auf 7q sowie Verluste von 14q, in anaplastischen Astrozytomen zusätzlich Verluste von 10p ein verringertes Gesamtüberleben. WHO-Grad-II-Astrozytome zeigten bei Verlusten von 3p ein schlechteres Gesamtüberleben. Chromosomale Aberrationen, die zu einem verlängerten Gesamtüberleben führten, waren Verluste von 1p und Zugewinne von 10p in WHO-Grad-III-Tumoren.
Die rezidivfreie Zeit wurde in high-grade Gliomen durch Zugewinne auf 7p und Verluste von 10p verringert. Eine Verkürzung der rezidivfreien Zeit in Glioblastomen zeigten außerdem Tumoren mit Verlusten von 7q, 10q und 14q. In anaplastischen Astrozytomen führten Verluste von 1p und 19q sowie Zugewinne auf 8q und 10p, in WHO-Grad-II-Astrozytomen Verluste von Chromosom 6 zu einer verlängerten Zeit bis zum Rezidiv.
Die Anfertigung onkogenetischer Baummodelle stellte verschiedene genetische Wege der Tumorgenese dar. Ein Cluster war gekennzeichnet durch einen Verlust von 6q, ein weiterer wurde initialisiert durch den Verlust von 13q, der dritte durch den Verlust von 9p. Der vierte Cluster wurde charakterisiert durch Zugewinne auf Chromosom 7 und Verluste von Chromosom 10, während der fünfte Cluster Zugewinne auf 8q sowie Verluste von 4q aufwies.
|
125 |
Characterizing the prevalence of chromosomal instability in interval colorectal cancerCisyk, Amy L. 10 January 2014 (has links)
Over 80% of colorectal cancers (CRCs) are sporadic/randomly arising tumors. Interval CRCs represent a subset of sporadic tumors that develop within 6-36 months after a negative colonoscopy. Interval CRCs are suggested to exhibit altered biological properties that contribute to rapid growth and proliferation. We hypothesize that chromosomal instability (CIN), or aberrant chromosome numbers, contributes to the etiology of Interval CRCs.
We have assembled a Manitoban cohort of Interval and sporadic (control) CRC tumor samples, and established a fluorescence in situ hybridization approach to characterize CIN by enumerating specific chromosomes.
The results of this study indicate that 75% of Interval CRCs exhibit a CIN phenotype, making CIN the most prevalent contributor to genomic instability in Interval CRCs. Only once we grasp a better understanding of the tumorigenic pathways through which Interval CRCs develop, can we tailor screening strategies and treatment options to specifically identify and combat this subset of sporadic CRC.
|
126 |
The Impact of Chromosomal Aberrations on the Regulation of Kallikrein 6 Expression in Serous Ovarian CarcinomaBayani, Jane Marie 02 August 2013 (has links)
Ovarian cancer (OCa) remains the leading cause of death due to a gynecologic malignancy in North American women, and the pathogenesis of this disease is a consequence of the interplay between DNA, RNA and proteins. The genomes of these cancers are characterized by numerical and structural aberrations, resulting in copy number changes of the affected regions. The serine protease, Kallikrein 6 (KLK6), is a promising biomarker and is over-expressed in OCa. However, the mechanisms leading to the observed KLK6 overexpression are poorly understood; and to date, no study examining the chromosomal contributions to the overexpression have been conducted. Utilization of multi-colour Fluorescence in situ Hybridization (FISH)-based technologies to untreated primary serous OCa samples and cancer cell lines, showed that the KLK locus, on 19q13.3/4, is involved in both numerical and structural aberrations; was subject to high-level copy-number heterogeneity (p<0.001); and structural rearrangements of 19q were significantly co-related to grade (p<0.001). Patients with a loss of the KLK locus, or no structural rearrangement on 19q, experienced a trend towards longer disease free survival (DFS and better overall survival (OS), over those with a gain or amplification, or with breakage events on 19q. KLK6-specific immunohistochemistry (IHC) showed weak correlation with KLK6 copy-number, suggesting other mechanisms together with copy-number, drives its over-expression.
Among these mechanisms are microRNA (miRNAs), also shown to be affected by the copynumber changes in OCas. Therefore, we investigated the role of miRNAs in OCa and their role in KLK6 regulation. Specifically, we examined the copy-number status and miRNA expression in a representative OCa cell line, OVCAR-3. miRNA expression profiling of OCa cell lines and primary tumours showed their differential expression, including the decrease in expression of the let-7 family members, which are predicted to target KLK6. Indeed, when hsa-let-7a was transiently transfected into OVCAR-3, a reduction of secreted KLK6 protein was detected. Thus,
the contribution of numerical and structural aberrations of the OCa genome can directly affect the expression KLK6 through copy-number, but is also aided post-transcriptionally by miRNAs.
|
127 |
The Impact of Chromosomal Aberrations on the Regulation of Kallikrein 6 Expression in Serous Ovarian CarcinomaBayani, Jane Marie 02 August 2013 (has links)
Ovarian cancer (OCa) remains the leading cause of death due to a gynecologic malignancy in North American women, and the pathogenesis of this disease is a consequence of the interplay between DNA, RNA and proteins. The genomes of these cancers are characterized by numerical and structural aberrations, resulting in copy number changes of the affected regions. The serine protease, Kallikrein 6 (KLK6), is a promising biomarker and is over-expressed in OCa. However, the mechanisms leading to the observed KLK6 overexpression are poorly understood; and to date, no study examining the chromosomal contributions to the overexpression have been conducted. Utilization of multi-colour Fluorescence in situ Hybridization (FISH)-based technologies to untreated primary serous OCa samples and cancer cell lines, showed that the KLK locus, on 19q13.3/4, is involved in both numerical and structural aberrations; was subject to high-level copy-number heterogeneity (p<0.001); and structural rearrangements of 19q were significantly co-related to grade (p<0.001). Patients with a loss of the KLK locus, or no structural rearrangement on 19q, experienced a trend towards longer disease free survival (DFS and better overall survival (OS), over those with a gain or amplification, or with breakage events on 19q. KLK6-specific immunohistochemistry (IHC) showed weak correlation with KLK6 copy-number, suggesting other mechanisms together with copy-number, drives its over-expression.
Among these mechanisms are microRNA (miRNAs), also shown to be affected by the copynumber changes in OCas. Therefore, we investigated the role of miRNAs in OCa and their role in KLK6 regulation. Specifically, we examined the copy-number status and miRNA expression in a representative OCa cell line, OVCAR-3. miRNA expression profiling of OCa cell lines and primary tumours showed their differential expression, including the decrease in expression of the let-7 family members, which are predicted to target KLK6. Indeed, when hsa-let-7a was transiently transfected into OVCAR-3, a reduction of secreted KLK6 protein was detected. Thus,
the contribution of numerical and structural aberrations of the OCa genome can directly affect the expression KLK6 through copy-number, but is also aided post-transcriptionally by miRNAs.
|
128 |
Inverted repeats as a source of eukaryotic genome instabilityNarayanan, Vidhya 08 July 2008 (has links)
Chromosomal rearrangements play a major role in the evolution of eukaryotic genomes. Genomic aberrations are also a hallmark of many tumors and are associated with a number of hereditary diseases in humans. The presence of repetitive sequences that can adopt non-canonical DNA structures is one of the factors which can predispose chromosomal regions where they reside to instability. Palindromic sequences (inverted repeats with or without a unique sequence between them) that can adopt hairpin or cruciform structures are frequently found in regions that are prone for gross chromosomal rearrangements (GCRs) in somatic and germ cells in different organisms. Direct physical evidence was obtained that double-strand breaks (DSBs) occur at the location of long inverted repeats, a triggering event for the genomic instability. However, the mechanisms by which palindromic sequences lead to chromosomal fragility are largely unknown. The overall goal of this research is to elucidate the mechanisms of DSB and GCR generation by palindromic sequences in yeast, Saccharomyces cerevisiae.
|
129 |
Investigation into protein anomalies in Prader-Willi syndromeMiss Teresa Munce Unknown Date (has links)
No description available.
|
130 |
Analysis of global gene expression in complex biological systems using microarray technology /Fält, Susann, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2006. / Härtill 4 uppsatser.
|
Page generated in 0.0523 seconds