Spelling suggestions: "subject:"circle."" "subject:"mircle.""
191 |
Architecture at Play: The Magic Circle and Flow in Video Game SpacesSin, Terry Hon-Tai 24 April 2012 (has links)
Video games are a part of modern culture. As video game spaces begin to enter a new generation’s spatial lexicon, it is important for architects, curators of spatial design, to understand this new medium of space. This thesis aims to introduce two concepts specific to video game design, the magic circle and flow, to architects as a means of understanding the design of video game spaces.
First coined by the Dutch historian Johann Huizinga in Homo Ludens, and later adapted by video game designers Katie Salen and Eric Zimmerman, the magic circle refers to the boundary created by the rules of a game that separate reality from the fantasy of the game. Within the magic circle, the rules of play can transform and give new meaning to spatial organizations that could be considered problematic in real world architectural design.
Flow is a psychological concept introduced by Hungarian psychology professor Mihály Csíkszentmihályi. When completing a task, flow occurs when both the skill level of the participant and the challenge level of the task are equally high. When a state of flow is achieved, the task becomes enjoyable and can be carried out indefinitely until the balance is broken. Effective video games spaces are specifically designed to contribute to flow experiences, while ineffective spaces can make a game too easy or too hard, creating a boredom or anxiety for the player.
Through a series of explorations and video game case studies, specifically in the first-person and third person shooter genre, this thesis first observes the transformation of implied spatial meanings in the magic circle. It then introduces the unique spatial languages used to generate spaces that support the creation of flow alongside the gameplay and narrative of a video game. This thesis culminates with the design and execution of an original capture the flag map created with the Unreal Engine that tests the concepts of the magic circle and flow in video game spaces. As video games become increasingly ubiquitous, this thesis acts as means of entry for architects to understand the unique properties of an emerging form of spatial design.
|
192 |
The Kansas City Food Circle : challenging the global food system /Hendrickson, Mary K., Unknown Date (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 241-248). Also available on the Internet.
|
193 |
The Kansas City Food Circle challenging the global food system /Hendrickson, Mary K., Unknown Date (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 241-248). Also available on the Internet.
|
194 |
Samlingen : Tvång eller valfrihet?Ungman, Elin January 2015 (has links)
Syftet med denna essä är att undersöka frågor kopplade till samlingens roll på förskolan och det dilemma som pedagoger ställs inför då barn inte vill delta. Det undersökningsmaterial som essän utgår från är en självupplevd samlingssituation, skriven som en berättelse. Denna situation är komplex och väcker många frågor. Essäns huvudfråga är: Hur kan man som pedagog förhålla sig till när barn inte vill delta i samlingen? I denna text kan man läsa om samlingens roll i förskolan, både ur ett historiskt och ett pedagogiskt perspektiv. Hur kommer det sig att samlingen har blivit ett sådant självklart inslag i förskolans verksamhet? Ett tema i texten är makt samt hur maktrelationen ser ut mellan pedagog och barn. Essän utforskar även vilka möjligheter barnen ges till inflytande i samlingen, samt hur man som pedagog kan arbeta mer inkluderande. Essän behandlar även frågor kring normer och etik. Michel Foucault, Jesper Juul, Jan-Olav Henriksen och Arne Johan Vetlesen är några av de personer som essän inspirerats av i de teoretiska utgångspunkterna.
|
195 |
Points de hauteur bornée sur les hypersurfaces des variétés toriques / Points of bounded height on hypersurfaces of toric varietiesMignot, Teddy 23 November 2015 (has links)
Depuis les 50 dernières années, de nombreux progrès ont été faits dans la compréhension du comportement asymptotique du nombre de points rationnels de hauteur bornée sur les variétés algébriques. Des conjectures précises ont été avancées par Baryrev, Manin et Peyre quant à la formule asymptotique attendue pour une variété générale.En 1962, à l'aide d'arguments issus de la méthode du cercle de Hardy et Littlewood, B. Birch a donné une estimation précise du nombre de points à coordonnées entières bornées dans une hypersurface définie par une équation homogène. Ceci revient à démontrer la conjecture de Batyrev-Manin-Peyre pour les hypersurfaces de l'espace projectif. Plus récemment, V. Blomer et J. Brüdern ont élaboré des techniques leur permettant d'établir une formule pour le comportement asymptotique du nombre de points de hauteur bornée pour des hypersurfaces d'espaces multiprojectifs définies par des équations multihomogènes diagonales. Parallèlement, D. Schindler a démontré la conjecture pour des hypersurfaces générales d'espaces biprojectifs, à l'aide de développements de la méthode de Birch.L'objet de cette thèse a été d'utiliser et de généraliser les techniques de Schindler, Blomer et Brüdern afin de démontrer la validité de la conjecture de Batyrev-Manin-Peyre pour le cas d'hypersurfaces de variétés toriques plus générales.Ce travail est composé de trois parties. La première partie concerne le cas particulier des hypersurfaces de tridegré (1,1,1) d'un espace triprojectif. Ce cas particulier constitue une première extension des techniques de Schindler à des variétés toriques dont le rang du groupe de Picard est 3. La deuxième partie est consacrée à l'étude des hypersurfaces d'une famille de variétés toriques dont le rang du groupe de Picard est 2 et contenant la famille des espaces biprojectifs. Il s'agit en effet d'étendre la méthode de Schindler afin d'obtenir une formule asymptotique pour le nombre de points de hauteur bornée sur ces variétés. Enfin, dans la dernière partie, nous généralisons les méthodes développées dans les deux parties précédentes à des hypersurfaces des variétés toriques complètes lisses de rang de groupe dont le cône effectif est supposé simplicial, ce qui nous permet de démontrer la conjecture de Batyrev-Manin-Peyre pour ces variétés. / For the last 50 years, many progresses have been made in the understanding of the asymptotic behaviour of the number of rational points of bouded height on algebraic varieties. Some precise conjectures have been advanced by Batyrev, Manin, and Peyre for the expected asymptotic formula for a general variety.In 1962, using some arguments of the Hardy-Littlewood circle method, B. Birch gave a precise estimate for the number of integral points whose coordinates are bounded on an hypersurface defined by an homogeneous equation. This amounts to demonstrating the Batyrev-Manin-Peyre conjecture for hypersurfaces of projective spaces. More recently, V. Blomer and J. Brüdern developed some methods permitting to establish a formula for the asymptotic growth of the number of points of bounded height on hypersurfaces of multiprojective spaces defined by multihomogeneous diagonal equations. In the same time, D. Schindler proved the conjecture for general hypersurfaces of biprojective spaces by using some developements of the method of Birch.The aim of this thesis was to use and generalize the methods of Schindler, blomer, and Brüdern in order to prove the Batyrev-Manin-Peyre conjecture in the case of hypersurfaces of some general toric varieties.This work contain three parts. The first one deals with the particular case of hypersurfaces of tridegree (1,1,1) of triprojective spaces. This particular case is a first extension of the method of Schindler to some toric varieties whose rank of the Picard group is 3. The second part deals with the study of hypersurfaces of a class of toric varieties whose rank of the Picard group is 2 and containing biprojective spaces. We establish a generalization of the method of Schindler method in order to find an asymptotic formula for the number of points of bounded height on these vrieties. Finally, in the last part, we generalize the methods developed in the last two part to treat the case of hypersurfaces of complete non-singular toric vareties whose effective cone is simplicial. This permits to prove the conjecture of batyrev-Manin-Peyre for these varieties.
|
196 |
JOHANN WOLFGANG VON GOETHES UND RUDOLF STEINERS FARBENLEHRE IM VERGLEICH / The color theory of Johann Wolfgang von Goethe and Rudolf Steiner in compareTRAUBOVÁ, Monika January 2017 (has links)
The present master thesis compares die theories of colors created by Johann Wolfgang von Goethe and Rudolf Steiner, who both created their individual theory as a reaction regarding another one published approximately a century prior to them. The thesis presents their theories and compares them on the basis of a certain set of categories. Their circumstances of origin, contemporaneous usage, interdisciplinarity and creation of the chromatic circle as an explanatory tool are defined and discussed. Furthermore a description of noticeable differences and similarities is added and the author points out the possible influences of the chromatic theories towards other poetical, philosophical or paedagogical works of the respetive creator.
|
197 |
Achieving an Anabaptist Vision: The Constitutive Rhetoric of Goshen Circle Mennonite LeadersWalton, Zachary J. 01 May 2011 (has links)
This dissertation analyzes the ways in which Mennonite rhetors used historical narratives to construct a coherent Mennonite identity in the 1940s and 1950s. During this era, U.S. American Mennonites faced a multitude of threats to their sectarian group identity, most especially during the Second World War. In response to these exigencies, a group of American Mennonite historians, who would later become known as the "Goshen Circle" of Mennonite historiography, discursively wove a new subject identity--known as a monogenic conception of Anabaptism--which reinforced Mennonite group identity and legitimated Mennonite faith convictions to outsiders. Until this point, Mennonite historians, sociologists, and others have only considered the discourse of the Goshen Circle along narrow lines. On the one hand, many historians have rejected the Goshen Circle discourse as simply partisan, and therefore "bad," history. On the other hand, other scholars still think that the historical work of the Goshen Circle simply "recovered" or "rediscovered" elements of Anabaptism which were implicit in the Mennonite tradition. In contrast to these positions, this dissertation argues that the establishment of an Anabaptist subjectivity was a rhetorical achievement and analyzes how several texts attempted rhetorical interventions to transform the already-given historical situations faced by twentieth-century Mennonites. I substantiate this claim by utilizing Maurice Charland's (1987) theory of constitutive rhetoric to analyze the discourse of three primary figures of Goshen Circle monogenic Anabaptist historiography: Harold S. Bender, Guy F. Hershberger, and J.C. Wenger. My analysis demonstrates: how these rhetors asserted the existence of a unified Anabaptist-Mennonite people, how they used "transhistorical" narratives to build networks of identification between sixteenth-century Anabaptists and their supposed twentieth-century Mennonite descendants, and how their constitutive rhetoric positioned Mennonites to take material action to confirm their place in the Anabaptist narrative.
|
198 |
Uso corporativo do território brasileiro e a nova dinâmica do lugar : o circuito espacial da produção de café e os círculos de cooperação no sudoeste de Minas Gerais (MG) /Reis, Guilherme Rodrigues dos. January 2009 (has links)
Orientador: Samira Peduti Kahil / Banca: Ricardo Castillo / Banca: Paulo Roberto Teixeira de Godoy / Resumo: Partindo dos conceitos círculo de cooperação, circuito espacial de produção e formação socioespacial da região cafeeira do Sudoeste de Minas Gerais, destaca-se um contexto histórico que se direciona para uma especialização produtiva desta região através do avanço do meio técnico-científico-informacional, que possibilita sua inserção no processo de globalização. A partir da difusão desse meio tecnificado, os novos objetos técnicos e as mesmas ações conservadoras se instalam no território para dinamizar a produção cafeeira, dando uma nova dinâmica ao lugar, a qual torna esta região apta a participar das trocas comerciais globais exacerbadas pela globalização. A inserção da região cafeeira do sudoeste mineiro na economia agrícola internacional se dá através de uma modernização conservadora, trazendo perda de autonomia do lugar e levando ao uso seletivo e corporativo do território. / Abstract: Based on the concepts of cooperation circle, spatial circuit of production and sociospatial formation of the coffee region in southern Minas Gerais stands out a historical context that goes to a productive specialization this region by the advancement of the technical-scientific-informational allowing their integration into the globalization process. From the diffusion of the means technified, the new technical objects and the same conservative actions settle in the territory to boost the coffee production giving a new dynamic to the place. And from this new dynamic that the region becomes able to participate in global trade exacerbated by globalization. The insertion of the coffee region in southwestern of the Minas Gerais in international agricultural economy is given by a conservative modernization bringing loss of autonomy of the place leading to the selective use and corporate of territory. / Mestre
|
199 |
A roda na escola infantil : aprendendo a roda aprendendo a conversarBombassaro, Maria Cláudia January 2010 (has links)
Este estudo surge a partir da pergunta: Que sentidos têm a Roda para crianças e professores na escola de educação infantil? Esta pergunta me leva a significar a Roda como linguagem, como conteúdo, como conteúdo-linguagem, amparada em autores como C. S. Peirce e Junqueira Filho. Tal escolha teórica me leva a investigar quais são a estrutura e as regras de funcionamento das Rodas postas em funcionamento nos encontros em Roda entre crianças e professoras numa escola de educação infantil. Como instrumentos metodológicos foram utilizados a observação participante, o diário de campo, entrevistas semiestruturadas e conversas com as crianças. Os dados produzidos em campo possibilitaram tanto a identificação de alguns sentidos para a Roda quanto a identificação da estrutura e das regras de funcionamento das Rodas observadas durante as idas à escola de educação infantil. Quando falo Roda, me refiro à Roda de conversa, que se dá pelo encontro de professoras e crianças, significados como pares uns dos outros, em interlocução, a partir de linguagens verbais e não verbais. Quando digo Roda, me refiro a um conteúdo-linguagem a ser aprendido tanto pelos professores quanto pelas crianças, e ao ser aprendido, cada vez que a Roda é posta em funcionamento, gera conhecimentos e aprendizagens sobre a Roda, sobre seus participantes e sobre conversar. / This study arises from the question: What are the senses of the Circle for children and teachers at kindergarten school? This question leads me to mean the Circle as a language, such as content, as content-language, supported by authors such as C. S. Peirce and Junqueira Filho. This theoretical choice leads me to investigate what are the structure and operating rules put in place in the Circles on Circle meetings with children and teachers in a kindergarten school. Methodological tools were used as participant observation, field diary, semi-structured interviews and conversations with children. The data produced in the field have enabled both the identification of some directions for the Circle as the identification of the structure and operating rules for Circles observed during visits to the kindergarten education. When I say Circle, I mean the conversation Circle, which goes by the gathering of teachers and children, meanings of each other as peers in dialogue, from verbal and nonverbal languages. When I say circle, I refer to a content-language to be learned by teachers and children, and once it is learned, each time the circle is turned on, it generates knowledge and learning on the circle on its participants and on the action of talking.
|
200 |
Aplicação e comparação de metodologias de projetos em grupos para resolução de problemas / Application and comparison of troubleshooting groups methodologiesHommerding, João Daniel January 2011 (has links)
Faz-se necessária, no ambiente industrial atual, a participação ativa dos colaboradores, proporcionando melhorias de processo / produto e correção de problemas. A utilização de metodologias de projetos em grupo para resolução de problemas, tais como os Círculos de Controle de Qualidade (CCQs), criados há mais de 40 anos, resulta na motivação dos colaboradores, por meio da melhoria do ambiente de trabalho e, consequentemente, de processos e de custo. Um dos objetivos deste estudo é verificar resultados que justifiquem, ou não, a continuidade da utilização do CCQ em uma empresa multinacional com unidade fabril no Brasil. Outro objetivo é comparar a metodologia CCQ com a metodologia Seis Sigma por meio da aplicação de um projeto piloto Seis Sigma nesta mesma empresa. Os resultados sugerem a continuidade do uso da metodologia CCQ na empresa analisada para resolução de problemas de baixa e média complexidades, com adoção de pequenas adequações fornecidas pela análise da metodologia Seis Sigma, além da adoção da metodologia Seis Sigma para condução de projetos de resolução de problemas complexos. / It is necessary in the current industrial environment, the active participation of employees, providing improvements in product / process and problem correction. The use of methodologies of group projects to solve problems, such as QCC (Quality Control Circle), established over 40 years, results in employee motivation by improving the work environment and, consequently, processes and costs. One purpose of this study is to verify results that would justify, or not, the continuing of the use of the QCC in a multinational company with manufacturing unit in Brazil. Another purpose is to compare the QCC methodology with the Six Sigma methodology by implementing a Six Sigma pilot project in the same company. The results suggest the continuing use of the QCC methodology in the analyzed company to solve problems of low and intermediate complexity, with the adoption of small adjustments provided by the analysis of Six Sigma beyond the adoption of Six Sigma methodology to conduct projects to solve complex problems.
|
Page generated in 0.0243 seconds