• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelling the transient response of windings, laminated steel coresand electromagnetic power devices by means of lumped circuits : With special reference to windings with a coaxial insulation system

Holmberg, Pär January 2000 (has links)
Electromagnetic transients impinging on electromagnetic power devices - such as electric machines, transformers and reactors - can stress the design severely. Thus the magnitudes of the transients are often decisive for the design of the devices. Further, the operation of a device can be transient in itself. This is the case for the explosive magnetic flux compression generator (EMG) and a ferromagnetic actuator. Models are presented that are mainly intended for transients in the millisecond range and faster. Hence, eddy currents and the related skin and proximity effect become significant in windings, magnetic cores and in the armatures of the devices. These effects are important for, e.g., the damping of the transients. Further, the displacement current in the insulation of the winding is significant. It changes the response of the windings dramatically, as it manifests the finite velocity of propagation of the electromagnetic fields. Under such circumstances, reflections and excited resonances can make the transient voltage and current distribution highly irregular. Induced voltages are modelled with self and mutual inductances or reluctances combined with winding templates. The displacement currents are modelled with capacitances or coefficients of potential. Cauer circuits and their dual form are used to model eddy currents in laminated cores and in conductors. The Cauer circuit enables one to consider hysteresis and the non-linear response of a magnetic core. It is also used to model the eddy currents in the moving armature of an EMG. A set-up is presented that can be used to study the transient voltage and the current distribution along a coil. The transient response of coaxially insulated windings is analysed and modelled in detail. A lumped circuit model is developed for a coil, DryformerTM - the new high-voltage transformer - and PowerformerTM, the new high-voltage generator. An alternative model, a combined lumped circuit and FEM model, is presented for a coaxially insulated winding in two slot cores.
12

Modélisation basée sur la méthode des réseaux de perméances en vue de l’optimisation de machines synchrones à simple et à double excitation / Modeling method based on magnetic equivalent circuit for the optimization of single and double excitation synchronous machines

Nedjar, Boumedyen 07 December 2011 (has links)
La traction hybride et/ou électrique est un domaine d’application en pleine croissance présentant une forte restriction en termes d’encombrement. Cela a poussé les concepteurs à créer des structures de machine adaptées. Parmi ces topologies, nous trouvons les machines synchrones à double excitation (MSDE). Ces machines permettent de combiner les avantages d’une machine à aimants et ceux d’une machine à excitation bobinée. Le choix d’un modèle pour ces machines est un élément important dans les étapes d’analyse, d’optimisation et de pré-dimensionnement. Ce mémoire présente une contribution à la modélisation des machines synchrones à simple et à double excitation basée sur la méthode des réseaux de perméances. Trois parties sont ainsi proposées. La première partie de la thèse présente deux états de l’art- un sur les machines synchrones à double excitation et l’autre sur les méthodes de modélisation des machines électriques et principalement la modélisation par réseau de perméances. Dans la deuxième partie, nous abordons la modélisation 2D de la machine synchrone à aimants permanents à concentration de flux avec prise en compte de la rotation et de la saturation. Le but de cette partie est de trouver des méthodes permettant de combiner à la fois temps de calcul et précision. On commence par la modélisation par réseau de perméances en se basant sur un maillage de l’espace d'étude par des réluctances bidirectionnelles, ainsi qu’une comparaison entre calcul du couple par le tenseur de Maxwell et flux-FMM. La deuxième section présente un couplage entre réseaux de perméances et éléments finis. La méthode proposée consiste à résoudre les deux modèles (réluctant et éléments finis) simultanément avec un logiciel EF. Le couplage s’effectue par une équivalence entre les dimensions géométriques et les caractéristiques magnétiques des matériaux. La présentation des différents modèles dans le plan précision-temps de calcul montre l’efficacité de l’utilisation des réseaux de perméances et du couplage comparé au modèle éléments finis. La troisième partie porte sur la modélisation tridimensionnelle des machines synchrones à double excitation. Dans un premier temps, nous présentons une adaptation de la modélisation par réseau de perméances aux structures tridimensionnelles. Puis, nous appliquons ce modèle aux machines synchrones à double excitation. La machine à double excitation à concentration de flux est présentée avec une étude de l’influence du feuilletage sur la capacité de contrôle du flux. Pour améliorer le contrôle du flux d'excitation, une machine à aimants enterrés homopolaire est également étudiée avec l'approche développée. La validation du modèle est réalisée par des éléments finis et des mesures expérimentales. Dans la dernière partie, une comparaison entre configurations homopolaire et bipolaire de la structure à aimants enterrés est effectuée, puis le rotor à concentration de flux est optimisé afin de le comparer à la machine à aimants enterrés. / The electric and / or hybrid driveis are an application area growing with a strong restriction in terms of congestion. This prompted the designers to create appropriate structures. Among these topologies, we find the double-excitation synchronous machine (MSDE). These machines can combine the advantages of permanent magnets machine and those of a coils excited machine.The choice of a model for these machines is an important step in the analysis, optimization and pre-sizing. This thesis presents a contribution to the modeling by magnetic equivalent circuit (MEC) of single and double excitation synchronous machines. Three parties are offered as well. The first part of the thesis presents two states of the art: one on the double-excitation synchronous machines and the other on the modeling of electrical machines, mainly in the modeling by magnetic equivalent circuit. In the second part, we discuss the 2D modeling of flux concentration permanent magnet synchronous machine taking into account the rotation and saturation. The purpose of this section is to find ways to combine both computational time and accuracy. We start by using the magnetic equivalent circuit modeling based on a mesh of the structure and each mesh is replaced by two-way reluctances, then a torque estimation are obtened by two methods flux-FMM and Maxwell stress Tensor. The second section presents a coupling between magnetic equivalent circuit and finite element method. The proposed method is to solve the two models (reluctant and finite elements) simultaneously with software EF. The coupling is performed by an equivalence between the geometric dimensions and magnetic properties of materials. The presentation of different models in terms of time-accurate calculation shows the effectiveness of the use of MEC and coupling method compared to FEM. The third part concerns the three-dimensional modeling of double excitation synchronous machines. At first, we present an adaptation of the MEC to the three-dimensional structures. Then we apply this model to the double excitation synchronous machines (DESM). The DESM with flux concentration configuration is presented. To better control the wund flux of excitation, a buried magnet homopolar machine is also studied with the same approach. Model validation is performed by finite element and experimental measurements. In the last part, a comparison between homopolar and bipolar configurations is made, then the rotor flux concentration is optimized in order to compare it to the machine magnets buried.
13

Contribution à la conception de modules hyperfréquences et optoélectroniques intégrés pour des systèmes optiques à très haut débit / Optoelectronic integrated packaging modules for optical communications at very high speed

Ngoho Moungoho, Stéphane Samuel 07 April 2016 (has links)
L’augmentation des capacités des systèmes de télécommunications optiques passe par le développement des dispositifs optoélectroniques innovants et des technologies clés à hautes performances. Ces dispositifs sont sujets à une forte intégration des composants et les technologies déployées mettent en œuvre des fonctions complexes (PDM – QPSK, PDM – 16 QAM, etc.). Il est donc nécessaire avant toute réalisation d’étudier le comportement électromagnétique de ces composants afin d’envisager des performances en haute fréquence et une bonne intégrité du signal contenant l’information dans la chaîne de transmission. Ainsi à travers une modélisation EM – circuit le comportement global d’un modulateur à plusieurs niveaux de phase, basé sur la déplétion de porteurs dans une jonction PN, est étudié et analysé. Le modulateur est dans un premier temps représenté par un modèle prenant en compte la jonction. Cette dernière est modélisée par sa résistance et sa capacité équivalentes. Ensuite le packaging du modulateur avec son circuit d’entrée pour les signaux RF et son circuit de sortie pour l’adaptation de charges en sortie est réalisé et optimisé. Une modélisation EM a également permis de concevoir le circuit d’entrée d’un multiplexeur intégré à un Convertisseur Numérique – Analogique 3 bits, destiné à mettre œuvre une modulation PDM – 64 QAM dans un système optique. Les résultats obtenus respectent les spécifications industrielles et permettent de d’envisager le fonctionnement en haute fréquence des dispositifs intégrés. / The increase of the capacities of optical telecommunications systems goes through the development of innovative optoelectronics devices and key technologies with high performances. These devices are subjects to high components integration and the deployed technologies implement complex functions (PDM - QPSK, PDM - 16 QAM etc.). Therefore, it is necessary before any realization to study the electromagnetic behavior of these components in order to predict good performances at high frequency and signal integrity in the transmission chain. Thus, through an EM - circuit modeling, the overall behavior of an electro-optical multilevel modulator based on carrier depletion in a PN junction has been studied and analyzed. The modulator is firstly represented by a model taking in account the junction. The junction is modeled by her equivalents resistance and capacity. Subsequently, the packaging of the modulator with the input and out circuit is realized and optimized. The EM modeling has also helped to design the input circuit of an integrated multiplexer to a 3 bits digital - analog converter for an optical system. The obtained results meet the industry specifications and allow predicting good performances in high frequency for the integrated devices.
14

Conception de convertisseurs électroniques de puissance à faible impact électromagnétique intégrant de nouvelles technologies d'interrupteurs à semi-conducteurs / Design of electronic low-impact electromagnetic power converters incorporating new semiconductor switch technologies

Rondon-Pinilla, Eliana 18 June 2014 (has links)
Actuellement, le développement de semiconducteurs et la demande croissante de convertisseurs en électronique de puissance dans les différents domaines de l’énergie électrique, notamment pour des applications dans l’aéronautique et les réseaux de transport et de distribution, imposent de nouvelles spécifications comme le fonctionnement à hautes fréquences de commutation, densités de puissance élevées, hautes températures et hauts rendements. Tout ceci contribue au fort développement des composants en SiC (Carbure de Silicium). Cependant, ces composants créent de nouvelles contraintes en Compatibilité Electromagnétique (CEM) à cause des conditions de haute fréquence de commutation et fortes vitesses de commutation (forts di/dt et dv/dt) en comparaison à d’autres composants conventionnels de l'électronique de puissance. Une étude des perturbations générées par les composants SiC est donc nécessaire. L'objectif de ce travail est de donner aux ingénieurs amenés à concevoir des convertisseurs une méthode capable de prédire les niveaux d'émissions conduites générées par un convertisseur électronique de puissance qui intègre des composants en SiC. La nouveauté du travail présenté dans cette thèse est l’intégration de différents modèles de type circuit pour tous les constituants d’un convertisseur (un hacheur série est pris comme exemple). Le modèle est valable pour une gamme de fréquences de 40Hz à 30MHz. Des approches de modélisation des parties passives du convertisseur sont présentées. Ces approches sont différentes selon que les composants modélisés soient disponibles ou à concevoir : elles sont basées sur des mesures pour la charge et les capacités ; elles sont basées sur des simulations prédictives pour routage du convertisseur. Le modèle complet du convertisseur (éléments passifs et actifs) est utilisé en simulation pour prédire les émissions conduites reçues dans le réseau stabilisateur d’impédance de ligne. Le modèle est capable de prédire l'impact de différents paramètres comme le routage, les paramètres de contrôle comme les différents rapports cycliques et les résistances de grille avec des résultats satisfaisants dans les domaines temporels et fréquentiels. Les résultats obtenus montrent que le modèle peut prédire les perturbations en mode conduit pour les différents cas jusqu'à une fréquence de 15MHz. Finalement, une étude paramétrique du convertisseur a été élaborée. Cette étude a permis de voir l’influence de la qualité des différents modèles comme les éléments parasites du routage, des composants passifs et actifs et d'identifier les éléments qui ont besoin d’un modèle précis pour avoir des résultats valides dans la prédiction des perturbations conduites. / The recent technological progress of semiconductors and increasing demand for power electronic converters in the different domains of electric energy particularly for applications in aeronautics and networks of transport and distribution impose new specifications such as high frequencies, high voltages, high temperatures and high current densities. All of this contributes in the strong development of SiC (Silicon Carbide) components. However these components create new issues in Electromagnetic Compatibility (EMC) because of the conditions of high frequency switching and high commutation speeds (high di/dt and dv/dt) compared to other conventional components in power electronics. A precise study of the emissions generated by SiC components is therefore necessary. The aim of this work is to give a method able to predict levels of conducted emissions generated by a power electronics converter with SiC components to engineers which design power converters. The novelty of the work presented in this thesis is the integration of different modeling approaches to form a circuit model of a SiC-based converter (a buck dc–dc converter is considered as an example). The modeling approach is validated in the frequency range from 40Hz to 30MHz. Modeling approaches of the passive parts of the converter are presented. Theses approaches differs according to whether the component is existing or to be designed : they are based on measurements for the load and capacitors; they are based on numerical computation and analytical formulations for PCB. The complete model obtained (passive and active components) is used in simulations to predict the conducted emissions received by the line impedance stabilization network. The model is able to predict the impact of various parameters such as PCB routing, the control parameters like duty cycles and different gate resistors in the time and frequency domains. A good agreement is obtained in all cases up to a frequency of 15MHz. Finally, a parametric study of the converter has been elaborated. This study allowed to see the influence of different models such as parasitic elements of the PCB, passive and active components and to identify the elements that need a precise model to obtain valid results in the prediction of conducted EMI.
15

Contribution à l'analyse de la susceptibilité électromagnétique des composants : Caractérisation et modélisation des étages d'entrée des circuits intégrés numériques / Contribution to the electromagnetic susceptibility analysis of components : Characterization and modeling of input stages of digital integrated circuits

Kane, Ibrahim 21 December 2016 (has links)
La prolifération des composants électroniques fait que l'étude de leur vulnérabilité face à des agressions électromagnétiques intentionnelles ou non devient de plus en plus préoccupante. Notre étude s'inscrit dans ce contexte et s'oriente plus particulièrement vers les composants numériques. Ces derniers incorporent généralement, à toutes leurs interfaces d'entrée et de sortie, des éléments de protection contre les décharges électrostatiques permettant d'éliminer tout signal se présentant avec une amplitude élevée. Cependant, les signaux perturbateurs peuvent avoir des amplitudes moindres mais des formes d'onde complexes et capables de causer des dysfonctionnements à ces composants numériques sans activer les protections. Dans ce cas, les étages d'entrée se retrouvent au premier plan et leur comportement face à ces signaux perturbateurs peut altérer la fonctionnalité globale du circuit. Ainsi, nous nous sommes proposés d'étudier et de modéliser les comportements de ces étages d'entrée face à ces types d'agressions. Une première étape a consisté à définir une plateforme d'expérimentation pour les composants numériques. Une sélection des types de composants de test a d'abord été effectuée et le choix s'est porté naturellement sur l'inverseur CMOS, car il est présent sur la quasi-totalité des étages d'entrée, et sa structure est simple et connue. Le choix de cette technologie est également dicté par sa simplicité et son omniprésence dans les équipements électroniques actuels. Différents types de signaux perturbateurs ont été appliqués à ces inverseurs CMOS afin d'observer et de relever leurs comportements typiques et particuliers. Ensuite, à partir des résultats expérimentaux, un modèle SPICE comportemental et générique des inverseurs CMOS a été créé. Différents types de modèles de composants numériques existent mais le type SPICE est le seul à expliciter leur architecture complète. En effet, pour des raisons liées aux propriétés intellectuelles, les fabricants sont généralement discrets sur les structures internes de leurs circuits intégrés. Par contre, ces modèles SPICE ne sont à priori valables que dans des limites de fonctionnement définis par les fabricants. Nous avons apporté diverses modifications à ce modèle afin d'incorporer les comportements observés en dehors des limites de fonctionnement des inverseurs CMOS. Le besoin de trouver un modèle générique a imposé d'étudier un grand nombre d'échantillons d'inverseurs CMOS de différents fabricants et de différentes familles technologies. Enfin, une synthèse des résultats de simulations et des modèles, en fonction des fabricants et des familles technologiques, a été réalisée sous forme d'un tableau récapitulatif. / The proliferation of electronic components increases the interest of investigations about their vulnerability against electromagnetic interference intentionally emitted or not. Our study falls in this context and is specifically devoted to digital devices. These devices usually include, at their input/output ports, protection elements to prevent against electrostatic discharges and all kind of signals with very high amplitude. However, the perturbating signals can have low amplitude and complex waveforms that can cause trouble to these digital devices without triggering protection elements. In this case, first stages are the front, and their behaviors against these perturbation signals can alter the good operation of the device. Thus, we propose to study and model the behaviors of these first stages against such aggressions. First of all, an experimental platform was defined for the digital devices. A selection of devices is done and CMOS inverter was naturally chosen because of its presence in almost all of the first stages of digital devices, and because its structure is simple and well known. The choice of the CMOS technology is also due to its simplicity and omnipresence in current electronic equipments. Different perturbation signals were applied to these CMOS inverters to observe and record their typical and particular behaviors. Secondly, with the experimental results, a behavioral and generic SPICE model of CMOS inverters was developed. Different models exist for digital devices, but SPICE is the only one explicitly describing their complete architecture. But, for intellectual proprieties reasons, the manufacturers are usually reluctant to share information on their devices’ internals. However, the SPICE models are only valid within some operating limits defined by manufacturers. We have brought different modifications to this SPICE model to incorporate the observed behaviors of CMOS inverters inside and outside their normal operating conditions. The generic criterion of the final model imposed to study a large number of CMOS inverters of different manufacturers and different logic families. Finally, a synthesis of models and simulation results, by manufacturer and logic family, is produced.
16

Modeling and Analysis of Large-Scale On-Chip Interconnects

Feng, Zhuo 2009 December 1900 (has links)
As IC technologies scale to the nanometer regime, efficient and accurate modeling and analysis of VLSI systems with billions of transistors and interconnects becomes increasingly critical and difficult. VLSI systems impacted by the increasingly high dimensional process-voltage-temperature (PVT) variations demand much more modeling and analysis efforts than ever before, while the analysis of large scale on-chip interconnects that requires solving tens of millions of unknowns imposes great challenges in computer aided design areas. This dissertation presents new methodologies for addressing the above two important challenging issues for large scale on-chip interconnect modeling and analysis: In the past, the standard statistical circuit modeling techniques usually employ principal component analysis (PCA) and its variants to reduce the parameter dimensionality. Although widely adopted, these techniques can be very limited since parameter dimension reduction is achieved by merely considering the statistical distributions of the controlling parameters but neglecting the important correspondence between these parameters and the circuit performances (responses) under modeling. This dissertation presents a variety of performance-oriented parameter dimension reduction methods that can lead to more than one order of magnitude parameter reduction for a variety of VLSI circuit modeling and analysis problems. The sheer size of present day power/ground distribution networks makes their analysis and verification tasks extremely runtime and memory inefficient, and at the same time, limits the extent to which these networks can be optimized. Given today?s commodity graphics processing units (GPUs) that can deliver more than 500 GFlops (Flops: floating point operations per second). computing power and 100GB/s memory bandwidth, which are more than 10X greater than offered by modern day general-purpose quad-core microprocessors, it is very desirable to convert the impressive GPU computing power to usable design automation tools for VLSI verification. In this dissertation, for the first time, we show how to exploit recent massively parallel single-instruction multiple-thread (SIMT) based graphics processing unit (GPU) platforms to tackle power grid analysis with very promising performance. Our GPU based network analyzer is capable of solving tens of millions of power grid nodes in just a few seconds. Additionally, with the above GPU based simulation framework, more challenging three-dimensional full-chip thermal analysis can be solved in a much more efficient way than ever before.
17

Variability Aware Device Modeling and Circuit Design in 45nm Analog CMOS Technology

Ajayan, K R January 2014 (has links) (PDF)
Process variability is a major challenge for the design of nano scale MOSFETs due to fundamental physical limits as well as process control limitations. As the size of the devices is scales down to improve performance, the circuit becomes more sensitive to the process variations. Thus, it is necessary to have a device model that can predict the variations of device characteristics. Statistical modeling method is a potential solution for this problem. The novelty of the work is that we connect BSIM parameters directly to the underlying process parameters. This is very useful for fabs to optimize and control the specific processes to achieve certain circuit metric. This methodology and framework is extendable to any future technologies, because we used a device independent, but process depended frame work In the first part of this thesis, presents the design of nominal MOS devices with 28 nm physical gate length. The device is optimized to meet the specification of low standby power technology specification of International Technology Roadmap for Semiconductors ITRS(2012). Design of experiments are conducted and the following parameters gate length, oxide thickness, halo concentration, anneal temperature and title angle of halo doping are identified as the critical process parameters. The device performance factors saturation current, sub threshold current, output impendence and transconductance are examined under process variabilty. In the subsequent sections of the thesis, BSIM parameter extraction of MOS devices using the software ICCAP is presented. The variability of the spice parameters due to process variation is extracted. Using the extracted data a new BSIM interpolated model for a variability aware circuit design is proposed assume a single process parameter is varying. The model validation is done and error in ICCAP extraction method for process variability is less than 10% for all process variation condition in 3σ range. In the next section, proposes LUT model and interpolated method for a variability aware circuit design for single parameter variation. The error in LUT method for process variability reports less than 3% for all process variation condition in 3σ range. The error in perdition of drain current and intrinsic gain for LUT model files are very close to the result of device simulation. The focus of the work was to established effective method to interlink process and SPICE parameters under variability. This required generating a large number of BSIM parameter ducks. Since there could be some inaccuracy in large set of BSIM parameters, we used LUT as a golden standard. We used LUT modeling as a benchmark for validation of our BSIM3 model In the final section of thesis, impact of multi parameter variation of the processes in device performance is modelled using RSM method; the model is verified using ANOVA method. Models are found to be sufficient and stable. The reported error is less than 1% in all cases. Monte Carlo simulation confirms stability and repeatability of the model. The model for random variabilty of process parameters are formulated using BSIM and compared with the LUT model. The model was tested using a benchmark circuit. The maximum error in Monte Carlo simulation is found to be less than 3% for output current and less than 8% for output impedance.
18

Synthesis and Characterization of Strain Sensitive Multi-walled Carbon Nanotubes/Epoxy based Nanocomposites

Sanli, Abdulkadir 03 April 2018 (has links)
Among various nanofillers, carbon nanotubes (CNTs) have attracted a significant attention due to their excellent physical properties. Incorporation of a very low amount of CNTs in polymer matrices enhances mechanical, thermal and optical properties of conductive polymer nanocomposites (CPNs) tremendously. For mechanical sensors, the piezoresistive property of CNTs/polymer nanocomposites exhibits a great potential for the realization of stable, sensitive, tunable and cost-effective strain sensors. Achieving homogeneous CNTs dispersion within the polymer matrices, understanding their complex piezoresistivity and conduction mechanisms, as well as the response of the nanocomposites under humidity and temperature effects, is highly required for the realization of piezoresistive CNTs/polymer based nanocomposites. This research primarily aims to synthesize and characterize CNTs/polymer based strain sensitive nanocomposites, which are cost-effective, applicable on both rigid and flexible substrates and require a non-complex fabrication process. A comprehensive understanding of the complex conduction and piezoresistive mechanisms of CNTs/polymer nanocomposites and their responses under humidity and temperature effects is another purpose of this thesis. For this purpose, synthesis and complex electromechanical characterization of multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites are realized. In order to realize strain sensors for the strain range up to 1 % the use of epoxy is focused due to its good adhesion, dimensional stability, and good mechanical properties. The nanocomposites with up to 1 wt.% MWCNTs are synthesized by a non-complex direct mixing method and the final nanocomposites are deposited on flexible Kapton and rigid FR4 substrates and their corresponding morphological, electrical, electromechanical, as well as the response of the nanocomposite under humidity and temperature influences, are examined. The deformation over the sensor area is tested by digital image correlation (DIC) under quasi-static uniaxial tension. Quantitative piezoresistive characterization is performed by electrochemical impedance spectroscopy (EIS) over a wide range of frequencies. Further, dispersion quality of MWCNTs in the epoxy polymer matrix is monitored by scanning electron microscopy (SEM). Additionally, in order to tailor the piezoresistivity of the strain sensor, an R-C equivalent circuit is derived based on the impedance responses and the corresponding parameters are extracted from the applied strain. Obtained SEM images confirm that MWCNTs/epoxy nanocomposites with different MWCNTs concentrations have a good homogeneity and dispersion. Atomic force microscopy (AFM) analysis show that the samples have relatively good surface topography and fairly homogeneous CNTs networks. Higher sensitivity is achieved in particular at the concentrations close to the percolation threshold. A non-linear piezoresistive behavior is observed at low MWCNTs concentrations due to the dominance of tunneling effect. The strain sensitive nanocomposites deposited on FR4 substrates present high-performance strain sensing properties, including high sensitivity, good stability, and durability after cyclic loading and unloading. In addition, MWCNTs/epoxy nanocomposites show quite a small creep, low hysteresis under cyclic tensile and compressive loadings and fast response and recovery times. Nanocomposites provide an opportunity to measure 2-D strain in one position including amplitude and direction for complex configuration of structures in real-time systems or products. In contrast to present solutions for multi-directional strain sensing, MWCNTs/epoxy based nanocomposites give promising results in terms of durability, easy-processability, and tunable piezoresistivity. Unlike commercially-available approaches for crack/damage identification, MWCNTs/epoxy nanocomposites are capable of detecting the applied crack directly over a certain area. From the humidity influence, it has been found that resistance of nanocomposites increases with the increase of humidity exposure due to swelling of the polymer. Temperature investigations show that MWCNTs/epoxy nanocomposites give negative temperature coefficient (NTC) response due to thermal activation of charge carriers and the temperature sensitivity increases with the increase of filler concentration. The proposed approach can be further developed by combining differently fabricated sensors for realizing a compact structural health monitoring system or multi-functional sensor, where pressure, strain, temperature, and humidity can be monitored simultaneously. / Unter den verschiedenen Nanofillern haben CNTs aufgrund ihrer hervorragenden physikalischen Eigenschaften eine bedeutende Aufmerksamkeit erregt. Die Einarbeitung einer sehr geringen Menge an CNTs in Polymermatrizen verbessert die mechanischen, thermischen und optischen Eigenschaften von CPNs enorm. Für mechanische Sensoren bietet die piezoresistive Eigenschaft von CNTs/Polymer-Nanokompositen ein großes Potenzial zur Realisierung stabiler, empfindlicher, abstimmbarer und kostengünstiger Dehnungssensoren. Die Erzielung einer homogenen CNT-Dispersion innerhalb der Polymermatrizen, das Verständnis ihrer komplexen Piezoresistivitäts- und Leitungsmechanismen sowie die Reaktion der Nanokomposite unter Feuchte- und Temperatureinflüssen ist für die Realisierung piezoresistiver CNTs/Polymer-basierter Nanokomposite unerlässlich. Diese Arbeit zielt darauf ab, CNTs/polymerbasierte dehnungsempfindliche Nanokomposite herzustellen und zu charakterisieren. Diese Nanokompositen sollen kostengünstig, sowohl auf starren als auch auf flexiblen Substraten anwendbar sein und ein nicht komplexes Herstellungsverfahren erfordern. Ein umfassendes Verständnis der komplexen leitungs- und piezoresistive Mechanismen von CNTs/ Polymer-Nanokompositen und deren Reaktionen unter Feuchtigkeits- und Temperatureinflüssen ist ein weiteres Ziel dieser Arbeit. Zu diesem Zweck werden Synthese und komplexe elektromechanische Charakterisierung von MWCNTs/epoxy nanocomposites realisiert. Um Dehnungssensoren für den Dehnungsbereich bis zu 1 % realisieren zu können, wird der Einsatz von Epoxy aufgrund seiner guten Haftung, Dimensionsstabilität und guten mechanischen Eigenschaften fokussiert. Zufällig verteilte MWCNTs mit bis zu 1 wt.% MWCNTs-Konzentration ist durch ein direktes Mischen synthetisiert und die Nanokomposite werden auf flexiblen Kapton und starren FR4 Substraten durch Siebdruck appliziert und anschließend deren morphologische, elektrische, elektromechanische sowie die Reaktion des Nanocomposits unter Feuchtigkeits- und Temperatureinflüssen untersucht. Die Verformung über den Sensorbereich wird duch die Digital Image Correlation (DIC) Methode unter quasi-statischer uniaxialer Spannung getestet. Die quantitative piezoresistive Charakterisierung wird mit elektrische Impedanzspektroskopie (EIS) in einem breitem Frquenzspektrum durchgeführt. Ferner wird die Dispersionsqualität von MWCNTs in der Epoxidepolymermatrix durch Scanning Electron Microscopy (SEM) überprüft. Zusätzlich ist, um die Piezoresistivität des Dehnungssensors abzustimmen, eine RC-Äquivalenzschaltung auf der Grundlage der Impedanzantworten abgeleitet und die entsprechenden Parameter unter Belastung extrahiert. Erhaltene SEM-Bilder bestätigen, dass MWCNTs/Epoxide-Nanokomposite mit unterschiedlichen MWCNTs-Konzentrationen eine gute Homogenität und Dispersion aufweisen. Die atomic force microscopy (AFM) Untersuchung zeigt, dass die Proben relativ gute Oberflächentopographie und ziemlich homogene CNT-Netzwerke aufweisen. Eine höhere Empfindlichkeit wird insbesondere bei den Konzentrationen nahe der Perkolationsschwelle erreicht. Eine nichtlineare Piezoresistivität wird bei niedrigen MWCNTs Konzentrationen aufgrund der Dominanz des Tunnelwirkungseffekts beobachtet. Die auf FR4-Substraten applizierten dehnungsempfindlichen Nanokomposite weisen ausgezeichnete Dehnungsmessungseigenschaften einschließlich hohe Empfindlichkeit, gute Stabilität und Haltbarkeit nach zyklischer Be- und Entlastung auf. Darüber hinaus zeigen MWCNTs/Epoxide-Nanokomposite ein geringes Kriechen, eine kleine Hysterese unter zyklischen Zug- und Druckbelastungen, sowie schnelle Reaktionsund Wiederherstellungszeiten. Nanokomposite bieten die Möglichkeit, 2-D-Dehnungen in einer Position einschließlich Amplitude und Richtung innerhalb einer Materialstruktur in Echtzeitsystemen oder Produkten zu messen. Im Gegensatz zu aktuellen Lösungen für die multi-direktionale Dehnungsmessung, bieten die MWCNTs/Epoxide-Nanokomposite vielversprechende Ergebnisse in Bezug auf Langlebigkeit, leichte Verarbeitung und einstellbare Piezoresistivität. Im Unterschied zu kommerziell verfügbaren Ansätzen wird festgestellt, dassMWCNTs/Epoxide-Nanokomposite zur Riss-/Schadenserkennung in der Lage sind, den angelegten Riss direkt über einen bestimmten Bereich zu detektieren. Aus dem Einfluss der Feuchtigkeit hat sich herausgestellt, dass die Resistenz von Nanokompositen mit zunehmender Feuchtigkeitsbelastung durch Quellung des Polymers zunimmt. Temperaturuntersuchungen zeigen, dass MWCNTs/Epoxide-Nanokomposite aufgrund der thermischen Aktivierung von Ladungsträgern auf Temperatureinflüsse reagieren und die Temperaturempfindlichkeit mit der Erhöhung der Füllstoffkonzentration zunimmt. Der vorgeschlagene Ansatz kann durch die Kombination unterschiedlich hergestellte Sensoren zur Realisierung eines kompakten zur Überwachung des Zustands von Strukturen oder von multifunktionalen Sensoren weiterentwickelt werden, bei denen gleichzeitig Druck, Dehnung, Temperatur und Feuchtigkeit überwacht werden können.

Page generated in 0.4299 seconds