• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of Modulation Methods to Synthesize High Performance Resonator-Based RF MEMS Components

Xu, Changting 01 February 2018 (has links)
The growing demand for wireless communication systems is driving the integration of radio frequency (RF) front-ends on the same chip with multi-band functionality and higher spectral efficiency. Microelectromechanical systems (MEMS) have an overarching applicability to RF communications and are critical components in facilitating this integration process. Among a variety of RF MEMS devices, piezoelectric MEMS resonators have sparked significant research and commercial interest for use in oscillators, filters, and duplexers. Compared to their bulky quartz crystal and surface acoustic wave (SAW) counterparts, MEMS resonators exhibit impressive advantages of compact size, lower production cost, lower power consumption, and higher level of integration with CMOS fabrication processes. One of the promising piezoelectric MEMS resonator technologies is the aluminum nitride (AlN) contour mode resonator (CMR). On one hand, AlN is chemically stable and offers superior acoustic properties such as large stiffness and low loss. Furthermore, CMRs offer low motional resistance over a broad range of frequencies (few MHZ to GHz), which are lithographically-definable on the same silicon substrates. To date, RF MEMS resonators (include CMRs) have been extensively studied; however, one aspect that was not thoroughly investigated is how to modulate/tune their equivalent parameters to enhance their performance in oscillators and duplexers. The goal of this thesis is to investigate various modulation methods to improve the thermal stability of the resonator, its “effective” quality factor when used in an oscillator, and build completely novel non-reciprocal components. Broadly defined, modulation refers to the exertion of a modifying or controlling influence on something, herein specifically, the resonator admittance. In this thesis, three categories of modulation methods are investigated: thermal modulation, force modulation, and external electronic modulation. Firstly, the AlN CMR’s center frequency can be tunned by the applied thermal power to the resonator body. The resonator temperature is kept constant (for example, 90 °C) via a temperature sensor and feedback control such that the center frequency is stable over the whole operation temperature range of interest (e.g. –35 to 85 °C). The maximum power consumption to sustain the maximum temperature difference (120 ºC in this thesis) between resonator and ambient is reduced to a value as low as 353 μW – the lowest ever reported for any MEMS device. These results were attained while simultaneously maintaining a high quality factor (up to 4450 at 220 MHz device). The feedback control was implemented by either analog circuits or via a microprocessor. The analog feedback control, which innovatively utilized a dummy resistor to compensate for temperature gradients, resulted in a total power consumption of 3.8 mW and a frequency stability of 100 ppm over 120 ºC. As for the digital compensation, artificial neural network algorithm was employed to facilitate faster calibration of look-up tables for multiple frequencies. This method attained a frequency stability of 14 ppm over 120 ºC. The second modulation method explored in this thesis is based on the use of an effective external force to enhance the 3-dB quality factor of AlN CMRs and improve the phase noise performance of resonator-based oscillators. The force modulation method was embodied in a two-port device, where one of the two ports is used as a one-port resonator and the other is driven by an external signal to effectively apply an external force to the first port. Through this technique, the quality factor of the resonator was boosted by 140 times (up to 150,000) and the phase noise of the corresponding oscillator realized using the resonator was reduced by 10 dBc/Hz. Lastly, a novel magnetic-free electrical circulator topology that facilitates the development of in-band full duplexers (IBFD) for simultaneous transmit and receive (STAR) is proposed and modeled. Fundamentally, a linear time-invariant (LTI) filter network parametrically modulated via a switching matrix is used to break the reciprocity of the filter. The developed model accurately predicts the circulator behavior and shows very good agreement with the experimental results for a 21.4 MHz circulators built with MiniCircuit filter and switch components. Furthermore, a high frequency (1.1 GHz) circulator was synthesized based on AlN MEMS bandpass filters and CMOS RF switches, hence showing a compact approach that can be used in handheld devices. The modulation frequency and duty cycle are optimized so that the circulator can provide up to 15 dB of isolation over the filter bandwidth while good power transfer between the other two ports is maintained. The demonstrated device is expected to intrinsically offer low noise and high linearity. The combination of the first two modulation methods facilitates the implementation of monolithic, temperature-stable, ultra-low noise, multi-frequency oscillator banks. The third modulation technique that was investigated sets the path for the development of CMOS-compatible in-band full duplexers for simultaneous transmit and receive and thus facilitates the efficient utilization of the electromagnetic spectrum. With the aid of all these three modulation approaches, the author believes that a fully integrated, multi-frequency, spectrum-efficient transceiver is enabled for next-generation wireless communications.
12

Non reciprocal passive components on LTCC ferrite substrate / Composants passifs non réciproques hyperfréquences sur substrat ferrite LTCC

Yang, Shicheng 02 October 2015 (has links)
Cette thèse concerne de l’étude de composants passifs non-réciproque (circulateurs) fabriqué sur substrat LTCC ferrite. Les aimants externes utilisés dans les circulateurs classiques doivent créer un champ magnétique intense pour compenser le champs de démagnétisant dans le ferrite. Le nouveau circulateur présenté ici utilise une bobine intégrée dans le LTCC ferrite pour magnétiser le matériau de l'intérieur, pour réduire considérablement les effets des champs démagnétisants. Il est possible de contrôler le champ de polarisation rendant le dispositif multifonctionnel: lorsque la bobine est excitée par un courant, le dispositif fonctionne comme un circulateur dynamique dans lequel la direction de circulation peut être basculée en changeant la direction du courant. Si un aimant externe est placé sur le circulateur, sa fréquence de fonctionnement peut être accordée en ajustant le courant de polarisation. Contrairement à d'autres circulateurs LTCC avec aimants externes, le dispositif proposé peut même fonctionner comme un diviseur de puissance sans courant de polarisation. Un prototype de circulateur a été réalisé et caractérisé dans trois états: 1. démagnétisé, 2. Magnétisé par la bobine, 3. magnétisé par la bobine et des aimants externes. En l'absence de courant appliqué, la transmission de chaque port est d'environ -5 dB avec un coefficient de réflexion inférieur à -20 dB à 14,8 GHz. Quand un courant de 300 mA est injecté dans la bobine, les pertes d'insertion et l'isolation mesurées sont d'environ 3 dB et 8 dB, respectivement. Le coefficient de réflexion est inférieur à -20 dB à 14,2 GHz. Lorsque les aimants externes sont ajoutés avec un courant de 200 mA, les pertes d'insertion et l'isolation a été améliorée à 1,6 dB et 23 dB, respectivement à 14,2 GHz. La variation de la fréquence de travail du circulateur est de 0,6 GHz. Elle est due par la variation de l'aimantation M interne lorsque le courant est inférieur à 120 mA, puis par l’augmentation de la température créée par le courant dans la bobine. La taille (L * W * H) totale du circulateur réalisé est de 8mm * 8mm *1.1mm. Ce travail monte qu’il est possible d’intégrer (MMIC) sur un substrat LTCC ferrite des circuits passifs non-réciproques / This thesis investigates passive non-reciprocal components (mainly circulators) based on ferrite Low Temperature Co-fired Ceramic (LTCC) substrate. The external magnets used in conventional circulators must be strong to overcome the ferrite's demagnetization field. The novel circulator presented herein uses an embedded winding within the ferrite substrate to magnetize the material from the inside, thereby significantly reducing the demagnetization effects. Because of the controllability of the bias field, the resulting device is also multifunctional: when the windings are energized by a current, the device operates as a dynamic circulator in which the circulation direction can be changed by switching the direction of the current. Unlike other LTCC circulators with external magnets, the proposed device can even operate as a power splitter by removing the bias current. A circulator prototype has been characterized in three states: unbiased, biased by winding and biased by winding and external magnets. When no current is applied, the transmission of each port is about -5 dB with return loss better than 20 dB at 14.8 GHz. When a current of 300 mA is injected into the winding, the measured insertion loss and isolation of the circulator is approximately 3 dB and 8 dB, respectively, whereas the return loss is better than 20 dB at 14.2 GHz. When external magnets are added in addition to the current of 200 mA, the insertion loss and isolation is improved to 1.6 dB and 23 dB, respectively at 14.2 GHz. The variation of the circulator's working frequency is 0.6 GHz. This is achieved firstly by the change of internal magnetization M when current is less than 120 mA, then the heat in the substrate due to the winding introduces more frequency shifting. The total size (L*W*H) is 8mm*8mm*1.1mm
13

Etude et réalisation d'un circulateur hyperfréquence à nano particules magnétiques orientées dans la bande 40-60GHz / Study and fabrication of a microwave circulator with magnetic nanoparticles oriented in the 40-60 GHz range

Boyajian, Taline 27 September 2011 (has links)
Les composants passifs hyperfréquences deviennent de plus en plus commercialisés et employés dans les systèmes de télécommunications. La croissance technologique et l’augmentation de la demande des nouvelles applications requièrent de meilleures performances et de moindres coûts. Dans les applications sans fil et notamment dans les modules « émission/réception », les circulateurs sont utilisés pour l’émission et la réception des signaux simultanément à l’aide d’une seule antenne. Les couches magnétiques traditionnellement déposées et intégrées exigent une cristallisation à haute température ainsi que l’application d’un champ magnétique externe pour garder l’orientation des moments magnétiques. Cette orientation est cependant obtenue par des aimants lourds et volumineux. Devant ces limitations technologiques ainsi que la demande de miniaturisation, l’emploi de l’hexaferrite de baryum sous sa forme particulaire devrait permettre le développement de circulateurs auto-polarisés et miniaturisés à matériaux magnétiques composites. Les travaux présentés dans ce manuscrit ont pour objectif d’étudier et de réaliser un circulateur hyperfréquence à nano particules magnétiques orientées dans la bande 40-60 GHz. L’état de l’art expose les différentes topologies de circulateurs dont la topologie coplanaire est choisie pour notre application. L’étude analytique est basée sur les travaux de Bosma permettant de modéliser le circulateur triplaque. Les principales dimensions géométriques obtenues sont ensuite transposées vers la structure coplanaire en 3D à l’aide de l’outil de simulation HFSS. Devant les limitations de cet outil, différentes structures ont été étudiées et simulées numériquement pour présenter au mieux le matériau composite. Plusieurs séries de prototypes sont ensuite fabriquées à partir des structures optimisées en simulation numérique. Le matériau magnétique composite déposé a des épaisseurs de 40 et 100 μm. Les caractérisations hyperfréquences montrent la performance des dispositifs réalisés. Des pistes de recherche sont proposées pour l’amélioration des performances de nos prototypes / Microwave passive components become increasingly commercialized and used in telecommunications systems. Technological growth and the increased demand for new applications require higher performance and lower costs. In wireless applications, especially in "transceivers", circulators are used for transmitting and receiving signals simultaneously using a single antenna. Magnetic layers traditionally deposited and integrated require a high crystallization temperature and the application of an external magnetic field to keep the orientation of magnetic moments. This orientation is however obtained by heavy and bulky magnets. Given these technological limitations and the need to miniaturize, the use of barium hexaferrite particles envisages the development of self-biased and miniaturized circulators having magnetic composite materials. The ambition of this work is to study and to fabricate a microwave circulator with magnetic nanoparticles oriented in the 40 - 60 GHz range. The state of the art describes various topologies coplanar circulators from which the coplanar topology is chosen for our application. The analytical study is based on Bosma’s work to model the stripline circulator. The main geometric dimensions obtained are then transposed to the coplanar structure using the 3D simulation tool HFSS. Faced with this tool’s limitations, different structures were studied and simulated numerically to shape the best the composite material. Several series of prototypes are then manufactured. The magnetic composite material was deposited in layers having thicknesses of 40 and 100 μm. The microwave characterizations show the performance of the fabricated device. Research tracks are proposed to improve the performance of our prototypes
14

Studies on Circulator-Tree Wave Digital Filters

Kumar, Bhunesh, Ahmad, Naeem January 2009 (has links)
<p>A wave digital filter is derived from an analog filter, which is realized as classical doubly resistively terminated reactancefilters. Perfectly designed wave digital filters express good dynamic signal range, low roundoff noise and excellent stabilitycharacteristics with respect to nonlinearity which are produced due to finite wordlength effects. Wave digital filters inheritthe sensitivity properties from analog filters, therefore, coefficients values can be selected to favorable values.Wave digital filters, derived from ladder filters, have low coefficient sensitivity in the passband and stopband. These WDFsare very complicated and are non-modular. The lattice wave digital filters are modular and are not complex. However, theyhave very high sensitivity in the stopband and thus require large coefficient wordlengths. The number of coefficients equalsthe filter order which have to be odd.This thesis discusses the wave digital filter structures that are modular because they are designed by cascading the first-orderand second-order sections. These WDFs can be pipelined. They also exhibit all the above mentioned favorable properties.Similar to lattice WDFs, these structures are restricted to symmetrical and antisymmetrical transfer functions. The synthesisof these structures is based on the factorization of the scattering matrix of lossless two-ports.In this thesis work, lowpass wave digital filters based on circulator-tree structure are designed with different orders startingfrom 3 and going upto 13. In parallel to these circulator-tree wave digital filters, the simple digital filters are also designedwith the same specification. The results of the two filters are compared with each other. It is observed that impulse responseand attenuation response of the two kind of filters perfectly match. Therefore, it is can be concluded that circulator-tree WDFupto Nth order can be synthesized. The implementation examples of two filter with order 3 and order 7 is presented in thisdocumentation for ready reference. It has also been shown that the order of sections does not affect the transfer function ofthe filter. Noise has been introduced and adaptor sections are penetrated. From the results it is concluded that the order of theadaptor sections does not matter and also that the noise does not affect the other adaptors sections, it only propagates throughother adaptors sections.</p>
15

Studies on Circulator-Tree Wave Digital Filters

Kumar, Bhunesh, Ahmad, Naeem January 2009 (has links)
A wave digital filter is derived from an analog filter, which is realized as classical doubly resistively terminated reactancefilters. Perfectly designed wave digital filters express good dynamic signal range, low roundoff noise and excellent stabilitycharacteristics with respect to nonlinearity which are produced due to finite wordlength effects. Wave digital filters inheritthe sensitivity properties from analog filters, therefore, coefficients values can be selected to favorable values.Wave digital filters, derived from ladder filters, have low coefficient sensitivity in the passband and stopband. These WDFsare very complicated and are non-modular. The lattice wave digital filters are modular and are not complex. However, theyhave very high sensitivity in the stopband and thus require large coefficient wordlengths. The number of coefficients equalsthe filter order which have to be odd.This thesis discusses the wave digital filter structures that are modular because they are designed by cascading the first-orderand second-order sections. These WDFs can be pipelined. They also exhibit all the above mentioned favorable properties.Similar to lattice WDFs, these structures are restricted to symmetrical and antisymmetrical transfer functions. The synthesisof these structures is based on the factorization of the scattering matrix of lossless two-ports.In this thesis work, lowpass wave digital filters based on circulator-tree structure are designed with different orders startingfrom 3 and going upto 13. In parallel to these circulator-tree wave digital filters, the simple digital filters are also designedwith the same specification. The results of the two filters are compared with each other. It is observed that impulse responseand attenuation response of the two kind of filters perfectly match. Therefore, it is can be concluded that circulator-tree WDFupto Nth order can be synthesized. The implementation examples of two filter with order 3 and order 7 is presented in thisdocumentation for ready reference. It has also been shown that the order of sections does not affect the transfer function ofthe filter. Noise has been introduced and adaptor sections are penetrated. From the results it is concluded that the order of theadaptor sections does not matter and also that the noise does not affect the other adaptors sections, it only propagates throughother adaptors sections.
16

Měření základních parametrů optických a optoelektronických komponent / Measurement of basic parameters of optical and optoelectronic components

Beneš, Pavel January 2021 (has links)
This diploma thesis deals with optical and optoelecronic components. The first part of the work describes the optical paths and methods of their measurement. The second part describes the coupler, circulator and isolator. Further described is a laser diode, a photodetector and a modulator. The third part describes the measurement procedure of the coupler, circulator, isolator, laser diode, photodetector and modulator. The measured values are compared with the catalog values.
17

Projeto e análise de aplicações de circuladores ativos para a operação em frequências de ultrassom Doppler de ondas contínuas / Design and application analysis of active circulators for operation in frequencies of continuous-wave Doppler ultrasound

Santini, Tales Roberto de Souza 11 July 2014 (has links)
Os circuladores tradicionais são amplamente utilizados em telecomunicações e defesa militar para o simultâneo envio e recepção de sinais por um único meio. Esses circuitos passivos, fabricados a partir de materiais ferromagnéticos, possuem a desvantagem do aumento de dimensões, peso e custos de fabricação com a diminuição da frequência de operação definida no projeto destes dispositivos, inviabilizando sua aplicação em frequências abaixo de 500 MHz. O circulador ativo surgiu como uma alternativa aos tradicionais, tendo aplicações em frequências desde o nível DC até a ordem de dezenas de gigahertz. As suas maiores aplicações ocorrem quando são necessários dispositivos compactos, de baixo custo e de baixa potência. Os primeiros circuitos propostos possuíam uma grande limitação em termos de frequência de operação e de potência entregue à carga. Entretanto, com os avanços tecnológicos na eletrônica, tais problemas podem ser amenizados atualmente. Neste trabalho é apresentado o desenvolvimento de um circuito circulador ativo para a utilização em instrumentação eletrônica, em particular para a operação em frequências na ordem das utilizadas em equipamentos de ultrassom Doppler de ondas contínuas, na faixa de 2 MHz a 10 MHz. As possíveis vantagens da implementação de circuladores em sistemas de ultrassom estão relacionadas ao incremento da relação sinal-ruído, aumento da área de recepção do transdutor, simplificação da construção do transdutor, simplificação do circuito de demodulação/ processamento, e maior isolação entre os circuitos de transmissão e recepção de sinais. Na fase inicial, o circulador ativo proposto é modelado por equacionamento, utilizando-se tanto o modelo ideal dos amplificadores operacionais como o seu modelo de resposta em frequência. Simulações computacionais foram executadas para confirmar a validade do equacionamento. Um circuito montado em placa de prototipagem rápida foi apresentado, e testes de prova de conceito em baixas frequências foram realizados, mostrando uma grande semelhança entre o teórico, o simulado e o experimental. A segunda parte contou com o projeto do circuito circulador para a operação em maiores frequências. O circuito proposto é composto por três amplificadores operacionais de realimentação por corrente e vários componentes passivos. Uma análise de sensibilidade utilizando os métodos de Monte-Carlo e análise do pior caso foi aplicada, resultando em um perfil de comportamento frente às variações dos componentes do circuito e às variações da impedância de carga. Uma placa de circuito impressa foi projetada, utilizando-se de boas práticas de leiaute para a operação em altas frequências. Neste circuito montado, foram realizados os seguintes testes e medições: comportamento no domínio do tempo, faixa dinâmica, nível de isolação em relação à amplitude do sinal, largura de banda, levantamento dos parâmetros de espalhamento, e envio e recepção de sinais por transdutor de ultrassom Doppler de ondas contínuas. Os resultados dos testes de desempenho foram satisfatórios, apresentando uma banda de transmissão de sinais para frequências de 100 MHz, isolação entre portas não consecutivas de 39 dB na frequência de interesse para ultrassom Doppler e isolação maior que 20 dB para frequências de até 35 MHz. A faixa dinâmica excedeu a tensão de 5 Vpp, e o circuito teve bom comportamento no envio e na recepção simultânea de sinais pelo transdutor de ultrassom. / Traditional circulators are widely used in both telecommunications and military defense for sending and receiving signals simultaneously through a single medium. These passive circuits which are manufactured from ferromagnetic materials, have the disadvantages of having suffered an increase in dimensions, weight, and manufacturing costs along with the decrease in the operation frequency established in the designs of such devices, thus preventing their useful employment in frequencies below 500 MHz. The active circulator emerged as an alternative to the traditional ones, and has applications on frequencies ranging from a DC level to levels involving dozens of gigahertz. It is applicable when compact devices are made necessary, at a low cost, and for low frequencies. The first circuits to be introduced had a major limitation in terms of operating frequency and power delivered to the load. However, due to technological advances in electronics, problems such as the aforementioned can now be minimized. This research work presents the development of an active circulator circuit to be used in electronic instrumentation, particularly for operation at frequencies such as those used in continuous wave Doppler ultrasound equipment, ranging from 2 MHz to 10 MHz. The advantages made possible by implementing ultrasound systems with circulators are related to an increase in the signal-to-noise ratio, an increase in the transducers reception area, a simplified construction of the transducer, simplification of the demodulation/processing circuit, and a greater isolation between the transmission circuits and signal reception. In the initial phase, the proposed active circulator was modeled by means of an equating method, using both the ideal model of operational amplifiers and the model of frequency response. Computer simulations were carried out in order to confirm the validity of the equating method. A circuit mounted upon a breadboard was introduced and proof of concept assessments were performed at low frequencies, showing a great similarity among the theoretical, simulated and experimented data. The second phase is when the circulator circuits design was developed in order make its operation at higher frequencies possible. The proposed circuit is comprised of three currentfeedback operational amplifiers and several passive components. A sensitivity analysis was carried out using Monte-Carlo methods and worst-case analyses, resulting in a certain behavioral profile influenced by variations in circuit components and variations in load impedance. A printed circuit board was designed, employing good practice layout standards so that operation at high frequencies would be achieved. The following evaluations and measurements were performed on the circuit that was assembled: time domain behavior, dynamic range, isolation level relative to signal amplitude, bandwidth, survey of the scattering parameters, and transmission and reception of signals by a continuous wave Doppler ultrasound transducer. The results of the performance tests were satisfactory, presenting a 100 MHz signal transmission band, isolation between non-consecutive ports of 39 dB at the frequency of interest to the Doppler ultrasound, and an isolation greater than 20 dB for frequencies of up to 35 MHz. The dynamic range exceeded the 5Vpp and the circuit performed satisfactorily in the simultaneous transmission and reception of signals through the ultrasound\'s transducer.
18

Development of an Electromagnetic Glottal Waveform Sensor for Applications in High Acoustic Noise Environments

Pelteku, Altin E. 14 January 2004 (has links)
The challenges of measuring speech signals in the presence of a strong background noise cannot be easily addressed with traditional acoustic technology. A recent solution to the problem considers combining acoustic sensor measurements with real-time, non-acoustic detection of an aspect of the speech production process. While significant advancements have been made in that area using low-power radar-based techniques, drawbacks inherent to the operation of such sensors are yet to be surmounted. Therefore, one imperative scientific objective is to devise new, non-invasive non-acoustic sensor topologies that offer improvements regarding sensitivity, robustness, and acoustic bandwidth. This project investigates a novel design that directly senses the glottal flow waveform by measuring variations in the electromagnetic properties of neck tissues during voiced segments of speech. The approach is to explore two distinct sensor configurations, namely the“six-element" and the“parallel-plate" resonator. The research focuses on the modeling aspect of the biological load and the resonator prototypes using multi-transmission line (MTL) and finite element (FE) simulation tools. Finally, bench tests performed with both prototypes on phantom loads as well as human subjects are presented.
19

Design of Harmonic Filters for Renewable Energy Applications

Kumar, Bhunesh January 2011 (has links)
Harmonics are created by non-linear devices connected to the power system. Power system harmonics are multiples of the fundamental power system frequency and these harmonic frequencies can create distorted voltages and currents. Distortion of voltages and currents can affect the power system adversely causing power quality problems. Therefore, estimation of harmonics is of high importance for efficiency of the power system network. The problem of harmonic loss evaluation is of growing importance for renewable power system industry by impacting the operating costs and the useful life of the system components. Non-linear devices such as power electronics converters can inject harmonics alternating currents (AC) in the electrical power system. The number of sensitive loads that require ideal sinusoidal supply voltage for their proper operation has been increasing. To maintain the quality limits proposed by standards to protect the sensitive loads, it is necessary to include some form of filtering device to the power system. Harmonics also increases overall reactive power demanded by equivalent load. Filters have been devised to achieve an optimal control strategy for harmonic alleviation problems. To achieve an acceptable distortion, increase the power quality and to reduce the harmonics hence several three phase filter banks are used and connected in parallel. In this thesis, high order harmonics cases have been suppressed by employing variants of Butterworth, Chebyshev and Cauer filters. MATLAB/SIMULINK wind farm model was used to generate and analyze the different harmonics magnitude and frequency. High voltage direct current (HVDC) lines for an electrical grid that is more than50km far away wind farm generation plant was investigated for harmonics. These HVDC lines are also used in offshore wind farm plant. Investigated three-phase harmonics filters are shunt elements that are used in power systems for decreasing voltage distortion and for correcting the power factor. Renewable energy sources are not the stable source of energy generation like wind, solar and tidal e.t.c. Though they are secondary sources of generation and hard to connect with electrical grid. In near future the technique is to use the wave digital filter (WDF) or circulator-tree wave digital filter (CTWDF) for the renewable energy application can be employed to mitigate the harmonics. These WDF and CTWDF can b eused in HVDC lines and smart grid applications. A preliminary analysis is conducted for such a study.
20

Projeto e análise de aplicações de circuladores ativos para a operação em frequências de ultrassom Doppler de ondas contínuas / Design and application analysis of active circulators for operation in frequencies of continuous-wave Doppler ultrasound

Tales Roberto de Souza Santini 11 July 2014 (has links)
Os circuladores tradicionais são amplamente utilizados em telecomunicações e defesa militar para o simultâneo envio e recepção de sinais por um único meio. Esses circuitos passivos, fabricados a partir de materiais ferromagnéticos, possuem a desvantagem do aumento de dimensões, peso e custos de fabricação com a diminuição da frequência de operação definida no projeto destes dispositivos, inviabilizando sua aplicação em frequências abaixo de 500 MHz. O circulador ativo surgiu como uma alternativa aos tradicionais, tendo aplicações em frequências desde o nível DC até a ordem de dezenas de gigahertz. As suas maiores aplicações ocorrem quando são necessários dispositivos compactos, de baixo custo e de baixa potência. Os primeiros circuitos propostos possuíam uma grande limitação em termos de frequência de operação e de potência entregue à carga. Entretanto, com os avanços tecnológicos na eletrônica, tais problemas podem ser amenizados atualmente. Neste trabalho é apresentado o desenvolvimento de um circuito circulador ativo para a utilização em instrumentação eletrônica, em particular para a operação em frequências na ordem das utilizadas em equipamentos de ultrassom Doppler de ondas contínuas, na faixa de 2 MHz a 10 MHz. As possíveis vantagens da implementação de circuladores em sistemas de ultrassom estão relacionadas ao incremento da relação sinal-ruído, aumento da área de recepção do transdutor, simplificação da construção do transdutor, simplificação do circuito de demodulação/ processamento, e maior isolação entre os circuitos de transmissão e recepção de sinais. Na fase inicial, o circulador ativo proposto é modelado por equacionamento, utilizando-se tanto o modelo ideal dos amplificadores operacionais como o seu modelo de resposta em frequência. Simulações computacionais foram executadas para confirmar a validade do equacionamento. Um circuito montado em placa de prototipagem rápida foi apresentado, e testes de prova de conceito em baixas frequências foram realizados, mostrando uma grande semelhança entre o teórico, o simulado e o experimental. A segunda parte contou com o projeto do circuito circulador para a operação em maiores frequências. O circuito proposto é composto por três amplificadores operacionais de realimentação por corrente e vários componentes passivos. Uma análise de sensibilidade utilizando os métodos de Monte-Carlo e análise do pior caso foi aplicada, resultando em um perfil de comportamento frente às variações dos componentes do circuito e às variações da impedância de carga. Uma placa de circuito impressa foi projetada, utilizando-se de boas práticas de leiaute para a operação em altas frequências. Neste circuito montado, foram realizados os seguintes testes e medições: comportamento no domínio do tempo, faixa dinâmica, nível de isolação em relação à amplitude do sinal, largura de banda, levantamento dos parâmetros de espalhamento, e envio e recepção de sinais por transdutor de ultrassom Doppler de ondas contínuas. Os resultados dos testes de desempenho foram satisfatórios, apresentando uma banda de transmissão de sinais para frequências de 100 MHz, isolação entre portas não consecutivas de 39 dB na frequência de interesse para ultrassom Doppler e isolação maior que 20 dB para frequências de até 35 MHz. A faixa dinâmica excedeu a tensão de 5 Vpp, e o circuito teve bom comportamento no envio e na recepção simultânea de sinais pelo transdutor de ultrassom. / Traditional circulators are widely used in both telecommunications and military defense for sending and receiving signals simultaneously through a single medium. These passive circuits which are manufactured from ferromagnetic materials, have the disadvantages of having suffered an increase in dimensions, weight, and manufacturing costs along with the decrease in the operation frequency established in the designs of such devices, thus preventing their useful employment in frequencies below 500 MHz. The active circulator emerged as an alternative to the traditional ones, and has applications on frequencies ranging from a DC level to levels involving dozens of gigahertz. It is applicable when compact devices are made necessary, at a low cost, and for low frequencies. The first circuits to be introduced had a major limitation in terms of operating frequency and power delivered to the load. However, due to technological advances in electronics, problems such as the aforementioned can now be minimized. This research work presents the development of an active circulator circuit to be used in electronic instrumentation, particularly for operation at frequencies such as those used in continuous wave Doppler ultrasound equipment, ranging from 2 MHz to 10 MHz. The advantages made possible by implementing ultrasound systems with circulators are related to an increase in the signal-to-noise ratio, an increase in the transducers reception area, a simplified construction of the transducer, simplification of the demodulation/processing circuit, and a greater isolation between the transmission circuits and signal reception. In the initial phase, the proposed active circulator was modeled by means of an equating method, using both the ideal model of operational amplifiers and the model of frequency response. Computer simulations were carried out in order to confirm the validity of the equating method. A circuit mounted upon a breadboard was introduced and proof of concept assessments were performed at low frequencies, showing a great similarity among the theoretical, simulated and experimented data. The second phase is when the circulator circuits design was developed in order make its operation at higher frequencies possible. The proposed circuit is comprised of three currentfeedback operational amplifiers and several passive components. A sensitivity analysis was carried out using Monte-Carlo methods and worst-case analyses, resulting in a certain behavioral profile influenced by variations in circuit components and variations in load impedance. A printed circuit board was designed, employing good practice layout standards so that operation at high frequencies would be achieved. The following evaluations and measurements were performed on the circuit that was assembled: time domain behavior, dynamic range, isolation level relative to signal amplitude, bandwidth, survey of the scattering parameters, and transmission and reception of signals by a continuous wave Doppler ultrasound transducer. The results of the performance tests were satisfactory, presenting a 100 MHz signal transmission band, isolation between non-consecutive ports of 39 dB at the frequency of interest to the Doppler ultrasound, and an isolation greater than 20 dB for frequencies of up to 35 MHz. The dynamic range exceeded the 5Vpp and the circuit performed satisfactorily in the simultaneous transmission and reception of signals through the ultrasound\'s transducer.

Page generated in 0.0624 seconds