• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 7
  • 6
  • 5
  • 2
  • Tagged with
  • 151
  • 103
  • 95
  • 44
  • 43
  • 35
  • 35
  • 30
  • 26
  • 24
  • 23
  • 23
  • 21
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

ALMA Observations of the Young Substellar Binary System 2M1207

Ricci, L., Cazzoletti, P., Czekala, I., Andrews, S. M., Wilner, D., Szűcs, L., Lodato, G., Testi, L., Pascucci, I., Mohanty, S., Apai, D., Carpenter, J. M., Bowler, B. P. 27 June 2017 (has links)
We present ALMA observations of the 2M1207 system, a young binary made of a brown dwarf with a planetary-mass companion at a projected separation of about 40 au. We detect emission from dust continuum at 0.89 mm and from the J = 3 - 2 rotational transition of CO from a very compact disk around the young brown dwarf. The small radius found for this brown dwarf disk may be due to truncation from the tidal interaction with the planetary-mass companion. Under the assumption of optically thin dust emission, we estimate. a dust mass of 0.1 M-circle plus. for the 2M1207A disk and a 3 sigma upper limit of similar to 1 M-Moon for dust surrounding 2M1207b, which is the tightest upper limit obtained so far for the mass of dust particles surrounding a young planetary-mass companion. We discuss the impact of this and other non-detections of young planetary-mass companions for models of planet formation that predict circumplanetary material to surround these objects.
52

Resolving the H alpha-emitting Region in the Wind of eta Carinae

Wu, Ya-Lin, Smith, Nathan, Close, Laird M., Males, Jared R., Morzinski, Katie M. 17 May 2017 (has links)
The massive evolved star. Carinae is the most luminous star in the Milky Way and has the highest steady wind mass-loss rate of any known star. Radiative transfer models of the spectrum by Hillier et al. predict that Ha is mostly emitted in regions of the wind at radii of 6-60 au from the star (2.5-25 mas at 2.35 kpc). We present diffraction-limited images (FWHM similar to 25 mas) with Magellan adaptive optics in two epochs, showing that. Carinae consistently appears similar to 2.5-3 mas wider in Ha emission compared to the adjacent 643 nm continuum. This implies that the H alpha line-forming region may have a characteristic emitting radius of 12 mas or similar to 30 au, in very good agreement with the Hillier stellar-wind model. This provides direct confirmation that the physical wind parameters of that model are roughly correct, including the mass-loss rate of M= 10(-3)M(circle dot) yr(-1), plus the clumping factor, and the terminal velocity. Comparison of the Ha images (ellipticity and PA) to the continuum images reveals no significant asymmetries at H alpha. Hence, any asymmetry induced by a companion or by the primary's rotation do not strongly influence the global H alpha emission in the outer wind.
53

Imagerie et analyse hyperspectrales d'observations interférométriques d'environnement circumstellaires / Hyperspectral analysis and imaging from interferometric observations of circumstellar environments

Dalla Vedova, Gaetan 23 September 2016 (has links)
L'observation des planètes extrasolaires, ainsi que l'étude de l'environnementcircumstellaire demandent des instruments très performants en matière dedynamique et de résolution angulaire. L'interférométrie classique et annulanteoffrent une solution. En particulier, dans le cas de l'interférométrie annulante,le flux de l'étoile sur l'axe de l'interféromètre est fortement réduit et permetainsi aux structures plus faibles hors axe d'émerger et être plus facilementdétectables. Dans ce contexte, la reconstruction d'image est un outilfondamental. Le développement d'interféromètres à haute résolution spectraletelle que AMBER, et bientôt MATISSE et GRAVITY, fait de la reconstruction d'imagepolychromatique une priorité.Cette thèse a comme objectif de développer et d'améliorer des techniques dereconstruction d'image hyperspectrale. Le travail présenté s'articule en deuxparties. En premier, nous discutons le potentiel de l'interférométrie annulantedans le cadre de la résolution du problème inverse. Ce travail repose sur dessimulations numériques et sur l'exploitation de données collectées sur le bancinterférométrique annulant PERSEE. Ensuite, nous avons adapté et développé desméthodes de reconstruction d'images monochromatique et polychromatique. Cestechniques ont été appliquées pour étudier l'environnement circumstellaire dedeux objets évolués, Achernar et Eta Carina, à partir de données PIONIER etAMBER.Ce travail apporte des éléments méthodologiques sur la reconstruction d'image etl'analyse hyperspectrale, ainsi que des études spécifiques sur l'environnementd'Achernar et d'Eta Carina / Environment of nearby stars requires instruments with high performances in termsof dynamics and angular resolution. The interferometry offers a solution. Inparticular, in the nulling interferometry, the flux of the star on the axis ofthe interferometer is strongly reduced, allowing to emerge fainter structuresaround it. In this context, the image reconstruction is a fundamental andpowerful tool. The advent of the high spectral resolution interferometers such asAMBER, MATISSE and GRAVITY boost the interest in the polychromatic imagereconstruction, in order to exploit all the available spectral information.The goal of this thesis is to develop and improve monochromatic and hyperspectralimaging techniques. The work here presented has two main parts. First, we discussthe performances of the nulling in the context of the inverse problem solving.This part is based on simulations and data collected on the nulling test benchPERSEE. Second, we adapted and developed monochromatic and hyperspectral imagereconstruction methods. Then, we applied these methods in order to study thecircumstellar environment of two evolved objects, Achernar and Eta Carina, fromPIONIER and AMBER observations.This work provides elements in the field of the image reconstruction forminterferometric observations as well as the specific studies on the environmentof Achernar and Eta Carina
54

Far-Infrared Observations of AFGL 2136: Simple Dust Toroid Models

Harvey, Paul M., Butner, Harold M., Colomé, Cecilia, Francesco, James D., Smith, Beverly J. 10 May 2000 (has links)
We report on high angular resolution observations of AFGL 2136 at 50 and 100 μm from NASA's Kuiper Airborne Observatory. Our data consist of diffraction-limited scans in two orthogonal directions as well as photometry. The far-infrared (FIR) emission is very compact with an unresolved core and also exhibits low surface brightness wings that extend out to a radius of order 70″ at 100 μm. We have attempted to fit our observations and the photometry and size data at other wavelengths with simple, dust envelope models in order to place limits on the quantity and distribution of dust around AFGL 2136. Spherically symmetric models cannot fit the data, but we show that a simple approximation to a toroidal dust distribution can fit the energy distribution and size data rather well. The successful models imply a density gradient in the cloud of order ρ ∝ r-1.5 and optical depth at 100 μm of order unity.
55

Long-Term Polarization Observations of Mira Variable Stars Suggest Asymmetric Structures

Neilson, Hilding R., Ignace, Richard, Henson, Gary D. 03 March 2014 (has links)
Mira and semi-regular variable stars have been studied for centuries but continue to be enigmatic. One unsolved mystery is the presence of polarization from these stars. In particular, we present 40 years of polarization measurements for the prototype o Ceti and V CVn and find very different phenomena for each star. The polarization fraction and position angle for Mira is found to be small and highly variable. On the other hand, the polarization fraction for V CVn is large and variable, from 2-7%, and its position angle is approximately constant, suggesting a long-term asymmetric structure. We suggest a number of potential scenarios to explain these observations.
56

Pulsation and Mass Loss Across the H-R Diagram: From OB Stars to Cepheids to Red Supergiants

Neilson, Hilding R. 03 March 2014 (has links)
Both pulsation and mass loss are commonly observed in stars and are important ingredients for understanding stellar evolution and structure, especially for massive stars. There is a growing body of evidence that pulsation can also drive and enhance mass loss in massive stars and that pulsation-driven mass loss is important for stellar evolution. In this review, I will discuss recent advances in understanding pulsation-driven mass loss in massive main-sequence stars, classical Cepheids and red supergiants and present some challenges remaining.
57

Characterizing Dust and Ice Toward Protostars in the Orion Molecular Cloud Complex

Poteet, Charles Allen 18 December 2012 (has links)
No description available.
58

Monte Carlo radiation transfer studies of protoplanetary environments

Walker, Christina H. January 2007 (has links)
Monte Carlo radiation transfer provides an efficient modelling tool for probing the dusty local environment of young stars. Within this thesis, such theoretical models are used to study the disk structure of objects across the mass spectrum - young low mass Brown Dwarfs, solar mass T-Tauri stars, intermediate mass Herbig Ae stars, and candidate B-stars with massive disks. A Monte Carlo radiation transfer code is used to model images and photometric data in the UV - mm wavelength range. These models demonstrate how modelling techniques have been updated in an attempt to reduce the number of unknown parameters and extend the diversity of objects that can be studied.
59

Revolution evolution : tracing angular momentum during star and planetary system formation

Davies, Claire L. January 2015 (has links)
Stars form via the gravitational collapse of molecular clouds during which time the protostellar object contracts by over seven orders of magnitude. If all the angular momentum present in the natal cloud was conserved during collapse, stars would approach rotational velocities rapid enough to tear themselves apart within just a few Myr. In contrast to this, observations of pre-main sequence rotation rates are relatively slow (∼ 1 − 15 days) indicating that significant quantities of angular momentum must be removed from the star. I use observations of fully convective pre-main sequence stars in two well-studied, nearby regions of star formation (namely the Orion Nebula Cluster and Taurus-Auriga) to determine the removal rate of stellar angular momentum. I find the accretion disc-hosting stars to be rotating at a slower rate and contain less specific angular momentum than the disc-less stars. I interpret this as indicating a period of accretion disc-regulated angular momentum evolution followed by near-constant rotational evolution following disc dispersal. Furthermore, assuming that the age spread inferred from the Hertzsprung-Russell diagram constructed for the star forming region is real, I find that the removal rate of angular momentum during the accretion-disc hosting phase to be more rapid than that expected from simple disc-locking theory whereby contraction occurs at a fixed rotation period. This indicates a more efficient process of angular momentum removal must operate, most likely in the form of an accretion-driven stellar wind or outflow emanating from the star-disc interaction. The initial circumstellar envelope that surrounds a protostellar object during the earliest stages of star formation is rotationally flattened into a disc as the star contracts. An effective viscosity, present within the disc, enables the disc to evolve: mass accretes inwards through the disc and onto the star while momentum migrates outwards, forcing the outer regions of the disc to expand. I used spatially resolved submillimetre detections of the dust and gas components of protoplanetary discs, gathered from the literature, to measure the radial extent of discs around low-mass pre-main sequence stars of ∼ 1−10 Myr and probe their viscous evolution. I find no clear observational evidence for the radial expansion of the dust component. However, I find tentative evidence for the expansion ofthe gas component. This suggests that the evolution of the gas and dust components of protoplanetary discs are likely governed by different astrophysical processes. Observations of jets and outflows emanating from protostars and pre-main sequence stars highlight that it may also be possible to remove angular momentum from the circumstellar material. Using the sample of spatially resolved protoplanetary discs, I find no evidence for angular momentum removal during disc evolution. I also use the spatially resolved debris discs from the Submillimetre Common-User Bolometer Array-2 Observations of Nearby Stars survey to constrain the amount of angular momentum retained within planetary systems. This sample is compared to the protoplanetary disc angular momenta and to the angular momentum contained within pre-stellar cores. I find that significant quantities of angular momentum must be removed during disc formation and disc dispersal. This likely occurs via magnetic braking during the formation of the disc, via the launching of a disc or photo-evaporative wind, and/or via ejection of planetary material following dynamical interactions.
60

TOYS : time-domain observations of young stars

Bozhinova, Inna January 2017 (has links)
Stars form inside clouds of molecular gas and dust. In the early stages of stellar evolution the remainders of the initial cloud form a circumstellar disk. For the next few million years the disk will slowly dissipate via accretion, outflows, photoevaporation and planet growth while the star makes its way onto the Main Sequence. This stage of a star's life is referred to as the T Tauri phase and is characterised by high-level spectrophotometric variability. This thesis aims to study and map out the environments of T Tauri stars down to the very low mass regime by the means of time-domain monitoring. Different physical processes in the system manifest themselves as variability on different time- scales as well as produce characteristic spectroscopic and photometric features at various wave- lengths. In order to study young stellar objects in depth, the observing campaigns presented in this work were designed to cover a large range of time-scales - minutes, hours, days and months. Combining all the data, this thesis establishes a baseline of over a decade for some objects. The observations also cover a wide range of wavelengths from the optical to the mid-infrared part of the spectrum. The star RW Aur experienced two long-lasting dimming events in 2010 and 2014. This thesis presents a large collection of spectral and photometric measurements carried out just before and during the 2014 event. Spectral accretion signatures indicate no change in the accretion activity of the system. Photometry indicates that parallel to the dimming in the optical the star becomes brighter in the mid-infrared. The observations in this work combined with literature data suggest that the origin of the 2014 event is most likely obscuration of the star by hot dust from the disk being lifted into the disk wind. Very low mass stars (< 0.4 M⊙) are the most common type of star in the Galaxy. In order to understand the early stages of stellar evolution we must study young very low mass stars. This work investigates the photometric and spectroscopic variability of seven brown dwarfs in star forming regions near σ Ori and ε Ori. All targets exhibit optical photometric variability between from 0.1 to over 1.0 magnitude that persists on a time-scale of at least one decade. Despite the photometric variability no change in the spectral type is measured. In the cases where the stars are accreting, modelling of the spectral changes suggest the accretion flow is more homogeneous and less funnelled compared to Sun-like T Tauri stars. The non-accreting variables are more plausibly explained by obscuration by circumstellar material, possibly a ring made out of multiple clouds of dust grains and pebbles with varying optical depths. The star-disk systems studied in this thesis have some broader implications for star and planet formation theory. The case-study of RW Aur has unambiguously demonstrated that the planet- forming environment is very dynamic and can change dramatically on short time-scales, which in turn would have implications for the diversity of planetary systems found in the Galaxy. The Orion stars have shown that the current theory for the T Tauri stage of stellar evolution is valid down to the very low mass regime. The seven dwarfs are a good example for the evolutionary path of circumstellar disks, showing the transition from gas-high, flared accretion disks (σ Ori) to dust-dominated, depleted, structured debris disks (ε Ori).

Page generated in 0.033 seconds