• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 7
  • 6
  • 5
  • 2
  • Tagged with
  • 151
  • 103
  • 95
  • 44
  • 43
  • 35
  • 35
  • 30
  • 26
  • 24
  • 23
  • 23
  • 21
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Sources of Dust Extinction in Type Ia Supernovae : Measurements and constraints from X-rays to the Infrared

Johansson, Joel January 2015 (has links)
The use of Type Ia supernovae (SNe Ia) as distance indicators is essential for studying the expansion history of the Universe and for exploring the nature of dark energy. However, a lack of understanding of the progenitor systems and the empirically derived colour-brightness corrections represent severe limitations for SNe Ia as cosmological probes. In this thesis, we study how dust along the line of sight towards SNe Ia affects the observed light over a wide range of wavelengths; from X-rays to infrared. Unless properly corrected for, the existence of intergalactic dust will introduce a redshift dependent magnitude offset to standard candle sources and bias the cosmological parameter estimates as derived from observations of SNe Ia. We model the optical extinction and X-ray scattering properties of intergalactic dust grains to constrain the intergalactic opacity using a combined analysis of observed quasar colours and measurements of the soft X-ray background. We place upper limits on the extinction AB(z = 1) &lt; 0.10 - 0.25 mag, and the dust density parameter Ωdust &lt; 10−5 − 10−4 (ρgrain/3 g cm−3), for models with RV &lt; 12 − ∞, respectively. Dust in the host galaxies, and dust that may reside in the circumstellar (CS) environment, have important implications for the observed colours of SNe Ia. Using the Hubble Space Telescope and several ground based telescopes, we measure the extinction law, from UV to NIR, for a sample of six nearby SNe Ia. The SNe span a range of E(B − V ) ≈ 0.1 − 1.4 mag and RV  ≈ 1.5 − 2.7, showing a diversity of dust extinction parameters. We present mid- and far-infrared (IR) observations for a number of SNe Ia, obtained with the Herschel Space Observatory and Spitzer Space Telescope, addressing CS dust as an explanation for “peculiar” extinction towards some SNe Ia. No excess IR emission is detected, limiting CS dust masses, Mdust &lt; 10−5 solar masses. In particular, the timely appearance of SN 2014J in M82 - the closest SN Ia in several decades - allows for detailed studies, across an unprecedented wavelength range, of its lightcurve and spectral evolution along with the host galaxy and CS environment. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Manuscript. Paper 6: Manuscript.</p>
92

Une vie interférométrique des disques d'étoiles chaudes / An interferometric view of hot stars disks

Moser Faes, Daniel 06 October 2015 (has links)
L’interférométrie optique/IR à longue base a été récemment mise en place comme une technique capable de résoudre spatialement les étoiles et leurs environnements circumstellaires au niveau de la milliseconde d'angle (mas). Cette haute résolution ouvre toute une nouvelle fenêtre pour l'étude des systèmes astrophysiques, fournissant des informations inaccessibles par d'autres techniques. Les disques astrophysiques sont observés dans une grande variété de systèmes, de galaxies jusqu'aux anneaux planétaires, partageant communément des processus physiques similaires. Deux disques particuliers sont étudiés dans la thèse: (i) les étoiles B He-riches qui présente des champs magnétiques de l'ordre de kG et que confine leurs vents dans des structures appelées magnétosphères; et (ii) les étoiles Be, rotateurs rapides qui présentent des disques circumstellaires épisodiques. Cette étude utilise la technique interférométrique pour étudier à la fois la photosphère et l'environnement circumstellaire de ces étoiles. L'objectif est de combiner l'interférométrie avec d'autres techniques d'observation (telles que la spectroscopie et la polarimétrie) pour effectuer une description physique complète et bien contraindre ces systèmes. Cette description est acquise par l'interprétation de l'ensemble des observations par des modèles de transfert radiatif. / Optical long baseline interferometry was recently established as a technique capable of resolving stars and their circumstellar environments at the milliarcsecond (mas) resolution level. This high-resolution opens an entire new window to the study of astrophysical systems, providing information inaccessible by other techniques. Astrophysical disks are observed in a wide variety of systems, from galaxies up to planetary rings, commonly sharing similar physical processes. Two particular disk like systems are studied in the thesis: (i) B He-rich stars that exhibits magnetic fields in order of kG and that trap their winds in structures called magnetospheres; and (ii) Be stars, fast rotating stars that create circumstellar viscous disks. This study uses the interferometric technique to investigate both the photosphere proper and the circumstellar environment of these stars. The objective is to combine interferometry with other observational techniques (such as spectroscopy and polarimetry) to perform a complete and well-constrained physical description of these systems. This description is accompanied by radiative transfer models.
93

The Inner 25 au Debris Distribution in the ϵ Eri System

Su, Kate Y. L., De Buizer, James M., Rieke, George H., Krivov, Alexander V., Löhne, Torsten, Marengo, Massimo, Stapelfeldt, Karl R., Ballering, Nicholas P., Vacca, William D. 25 April 2017 (has links)
Debris disk morphology is wavelength dependent due to the wide range of particle sizes and size-dependent dynamics influenced by various forces. Resolved images of nearby debris disks reveal complex disk structures that are difficult to distinguish from their spectral energy distributions. Therefore, multi-wavelength resolved images of nearby debris systems provide an essential foundation to understand the intricate interplay between collisional, gravitational, and radiative forces that govern debris disk structures. We present the Stratospheric Observatory for Infrared Astronomy (SOFIA) 35 mu m resolved disk image of is an element of Eri, the closest debris disk around a star similar to the early Sun. Combining with the Spitzer resolved image at 24 mu m and 15-38 mu m excess spectrum, we examine two proposed origins of the inner debris in is an element of Eri: (1) in situ planetesimal belt(s) and (2) dragged-in grains from the cold outer belt. We find that the presence of in situ dust-producing planetesmial belt(s) is the most likely source of the excess emission in the inner 25 au region. Although a small amount of dragged-in grains from the cold belt could contribute to the excess emission in the inner region, the resolution of the SOFIA data is high enough to rule out the possibility that the entire inner warm excess results from dragged-in grains, but not enough to distinguish one broad inner disk from two narrow belts.
94

Molecular gas around the binary star R Aquarii

Olander, Terese January 2017 (has links)
At the end of the lives of low- to intermediate mass stars they can be found on the asymptotic giant branch (AGB). The AGB phase ends when the entire circumstellar envelope (CSE) is blown away in a superwindphase, in the end creating a planetary nebula. It is unknown what shapes the CSE and the planetary nebula. Binarity is a favored theory. In order to test this theory the CSE around the star R Aquarii has been studied using the emission from different molecules observed with ALMA. R Aquarii is a nearby binary system and therefore easy to study. The system consists of a Mira variable on the AGB and a hot white dwarf. It was found that only in the emission from the 12CO J=3–2 transition were the CSE resolved enough for any structure to be seen. The morphology was irregular and no clear symmetry was seen. A spot in the same molecular line was detected at high velocities (v = -23 km/s) relative to the star at a projected distance of 7 arcsec south of R Aqr. Line profiles for 12CO and 13CO follow the same shape but differs in magnitude, indicating that they can be found in the same structure. A mass loss rate of 6.5·10-7 solar masses per year was calculated for R Aquarii using line intensities obtained from the line profile of 12CO. The morphology and kinematics of the CO CSE of R Aquarii are discussed within the limitations of the current data set. More observations with better resolution are needed to better understand the morphology of the CSE of R Aquarii and draw firm conclusions.
95

Dust production by evolved stars in the Local Group

Jones, Olivia Charlotte January 2013 (has links)
Stars on the asymptotic giant branch (AGB) lose a significant fraction of their mass to their surroundings through stellar winds. As a result, they are surrounded by circumstellar shells of gas and dust. This stellar mass loss replenishes and enriches the interstellar medium (ISM) with the products of stellar nucleosynthesis, progressively increasing its metallicity and thereby driving galactic chemical evolution. In this thesis I present a comprehensive study of oxygen-rich (O-rich) AGB stars and red supergiants (RSG) observed with the Spitzer Infrared Spectrograph and Infrared Space Observatory Short Wavelength Spectrometer in the Milky Way, the Large and Small Magellanic Clouds, and Galactic globular clusters; focusing on the composition of the dust in the circumstellar envelopes surrounding these stars. Combining spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates, I detect crystalline silicates in stars with dust mass-loss rates which span over a factor of 1000, down to rates of ~10^{-9} Msun/yr. Detections of crystalline silicates are more prevalent in higher mass-loss rate objects, and our results indicate that the dust mass-loss rate has a greater influence on the crystalline fraction than the gas mass-loss rate, suggesting that thermal annealing of amorphous silicate grains is the primary formation mechanism of crystalline silicates in such environments rather than the direct condensation of crystalline silicates from the gas phase. I also find that metallicity influences the composition of crystalline silicates, with enstatite seen increasingly at low metallicity, while forsterite becomes depleted at these metallicities due to the different chemical composition of the gas. To trace the evolution of alumina and silicate dust along the AGB, I present an alternative grid of MODUST radiative transfer-models for a range of dust compositions, mass-loss rates, dust shell inner radii and stellar parameters. Our analysis shows that the AKARI [11]-[15] versus [3.2]-[7] colour is a robust indicator of the fractional abundance of alumina in O-rich AGB stars. From the modelling, I show that a grain mixture consisting primarily of amorphous silicates, with contributions from amorphous alumina and metallic iron provides a good fit to the observed spectra of O-rich AGB stars in the LMC. In agreement with previous studies, we find a correlation between the dust composition and mass-loss rate; the lower the mass-loss rate the higher the percentage of alumina in the shell. Finally, I present mid-infrared observations of the Local Group dwarf elliptical galaxy M32; where I find a large population of dust-enshrouded stars. These observations will act as a pathfinder for future observations with the JWST and SPICA.
96

ALMA-resolved salt emission traces the chemical footprint and inner wind morphology of VY Canis Majoris

Decin, L., Richards, A. M. S., Millar, T. J., Baudry, A., De Beck, E., Homan, W., Smith, N., Van de Sande, M., Walsh, C. 29 July 2016 (has links)
Context. At the end of their lives, most stars lose a significant amount of mass through a stellar wind. The specific physical and chemical circumstances that lead to the onset of the stellar wind for cool luminous stars are not yet understood. Complex geometrical morphologies in the circumstellar envelopes prove that various dynamical and chemical processes are interlocked and that their relative contributions are not easy to disentangle. Aims. We aim to study the inner-wind structure (R < 250 R-star) of the well-known red supergiant VY CMa, the archetype for the class of luminous red supergiant stars experiencing high mass loss. Specifically, the objective is to unravel the density structure in the inner envelope and to examine the chemical interaction between gas and dust species. Methods. We analyse high spatial resolution (similar to 0 ''.024 x 0 ''.13) ALMA science verification (SV) data in band 7, in which four thermal emission lines of gaseous sodium chloride (NaCl) are present at high signal-to-noise ratio. Results. For the first time, the NaCl emission in the inner wind region of VY CMa is spatially resolved. The ALMA observations reveal the contribution of up to four different spatial regions. The NaCl emission pattern is different compared to the dust continuum and TiO2 emission already analysed from the ALMA SV data. The emission can be reconciled with an axisymmetric geometry, where the lower density polar/rotation axis has a position angle of similar to 50 degrees measured from north to east. However, this picture cannot capture the full morphological diversity, and discrete mass ejection events need to be invoked to explain localized higher-density regions. The velocity traced by the gaseous NaCl line profiles is significantly lower than the average wind terminal velocity, and much slower than some of the fastest mass ejections, signalling a wide range of characteristic speeds for the mass loss. Gaseous NaCl is detected far beyond the main dust condensation region. Realising the refractory nature of this metal halide, this hints at a chemical process that prevents all NaCl from condensing onto dust grains. We show that in the case of the ratio of the surface binding temperature to the grain temperature being similar to 50, only some 10% of NaCl remains in gaseous form while, for lower values of this ratio, thermal desorption efficiently evaporates NaCl. Photodesorption by stellar photons does not seem to be a viable explanation for the detection of gaseous NaCl at 220 R-star from the central star, so instead, we propose shock-induced sputtering driven by localized mass ejection events as an alternative. Conclusions. The analysis of the NaCl lines demonstrates the capabilities of ALMA to decode the geometric morphologies and chemical pathways prevailing in the winds of evolved stars. These early ALMA results prove that the envelopes surrounding evolved stars are far from homogeneous, and that a variety of dynamical and chemical processes dictate the wind structure.
97

Envoltórios circunstelares de estrelas jovens de massa intermediária / Circumstellar envelopes of intermediate mass young stars

Rodrigo Georgetti Vieira 20 September 2012 (has links)
As estrelas Herbig Ae/Be (HAeBe) representam os objetos de massa intermediária (2-10 Msol) na pré-sequência principal. Algumas de suas propriedades físicas são pouco compreendidas até o momento. Somente o estudo conjunto das informações fornecidas em diversos comprimentos de onda pode revelar as características do material circunstelar destes objetos. O objetivo deste trabalho de doutorado é analisar sob vários aspectos a estrutura, a composição e a evolução destes ambientes circunstelares. Para realização deste estudo, adotamos a amostra de candidatas a estrelas HAeBe detectadas pelo Pico dos Dias Survey (Vieira et al. 2003). Evitamos as possíveis contaminações desta amostra por estrelas em estágios mais avançados utilizando diagramas de cores, estimativas de extinção e características espectrais. A química da poeira circunstelar foi analisada a partir das propriedades dos espectros ISO disponíveis para nossos objetos. O perfil espectral do silicato em torno de 10 microns revelou características evolutivas do material circunstelar. O status evolutivo dos objetos mais embebidos foi determinado por meio de estimativas da massa de seus envoltórios circunstelares. Este estudo indicou que a maior parte desta sub-amostra se encontra no estágio intermediário entre a Classe 0 (Menv>>M*) e a Classe I (Menv<M*) de estrelas jovens. Detalhes da morfologia do disco de PDS340 foram analisados por imagens no infravermelho-médio, obtidas em bancos de dados. Estas observações impuseram vínculos à extensão e orientação espacial do disco nesta faixa espectral. As observações disponíveis em vários comprimentos de onda revelaram características da estrutura e evolução do material circunstelar associado a estrelas HAeBe. A perspectiva do desenvolvimento de um modelo completo que abranja todas estas informações é descrita na conclusão do trabalho. / Herbig Ae/Be (HAeBe) objects are intermediate mass (2 -10 Msun) stars in the pre-main sequence. Some of their properties remain not well understood to date. Only a full multi-wavelength study is able to reveal a reasonable scenario for their circumstellar material. The purpose of the present work is to study the structure, composition and evolution of these circumstellar environments. To address this issues, the sample of HAeBe candidates detected by the Pico dos Dias Survey (Vieira et al., 2003) was adopted. To avoid the contamination by more evolved stars, we developed an analysis based on two-color diagrams, extinction values and spectral features. The chemistry of the circumstellar dust was studied based on Infrared Space Observatory spectra available to our sample. The silicate feature around 10 micron revealed evolutionary information of the circumstellar material. The evolutionary stage of the more embedded sources was determined by estimates of their envelope masses. This study indicates almost all of this sub-sample to be in the intermediate phase between Class 0 (Menv>>Msun) and Class I (Menv<Msun). Mid-infrared images, retrieved from archive data, introduced morphological constraints to the orientation and extension of the disk associated to PDS340. The available observations for several wavelengths revealed some characteristics of the structure and evolution of the circumstellar material associated to HAeBe stars. The perspective of the development of a complete model, which encompasses all the available data, is described in the conclusion of this work.
98

Um estudo teórico da evolução temporal das características polarimétricas de estrelas Be / A Theoretical Study of the Polarimetric Characteristics of Be Stars

Bruno Correia Mota 02 July 2013 (has links)
Estrelas Be são reconhecidas pela sua rápida rotação e pulsação não radial. São as únicas estrelas da Sequência Principal que apresentam discos circunstelares, os quais são formados por meio de processos ainda não completamente compreendidos. A modelagem das forças que atuam neste sistema conduz a previsões teóricas sobre a estrutura do disco que podem ser comparadas com dados observacionais. Podemos estudar as propriedades físicas dos discos de estrelas Be pelo efeito que a luz estelar sofre ao passar por eles, por exemplo, modelando a transferência radiativa. Neste ponto, a polarização surge como uma ferramenta muito útil para a investigação destes discos, permitindo a determinação de quantidades físicas importantes do sistema, como a densidade numérica de partículas e o ângulo de inclinação. Uma variabilidade intrigante observada em estrelas Be é a transição aperiódica entre uma fase B normal (sem disco) e uma fase Be (com disco). Estudos de monitoramento recentes encontraram, a partir da análise da polarização intrínseca decorrente da transição entre estas fases, uma relação significante entre a mudança da polarização através do salto de Balmer versus a polarização na banda V, fazendo surgir uma estrutura em loop como função do tempo, no assim denominado Diagrama Cor-Polarização. Neste trabalho, apresentamos uma análise do Diagrama Cor-Polarização por meio de modelos diversos. Fazemos uso do Disco de Decréscimo Viscoso que é o paradigma atual para explicar a formação e evolução dos discos de estrelas Be. Com isso, visamos determinar como a polarimetria pode contribuir para a compreensão dos mecanismos fundamentais envolvidos no processo de formação e dissipação do disco. / Be stars are recognized by their rapid rotation and non-radial pulsation. They are the only stars in the Main Sequence that have circumstellar disks that are formed by processes not yet fully understood. The modeling of the forces acting on this system leads to theoretical predictions about the structure of the disk that can be compared to observational data. We can study physical the properties of Be disks by modeling how stellar light is reprocessed by them. This requires solving the detailed radiative transfer problem involved. In this point, the study of polarization arise as a useful tool to investigate these disks, allowing for the determination of important physical quantities of the system, such as the particle number density and inclination angle. An intriguing variability observed in Be stars is the aperiodic transition between a B normal phase (without disk) to a Be phase (with disk). Recent monitoring studies found, from the analysis of the intrinsic polarization arising of the transition between these phases, a significant relation between the polarization change through the Balmer jump versus the V-Band polarization, giving rise to a loop structure as a function of time, in the so-called Color-Polarization Diagram. This work presents an analysis of the Color-Polarization Diagram by several models. We make use of the Viscous Decretion Disk Model, which assumes the existence of some injection mechanism of material at keplerian velocities in the disk base, where the turbulent viscosity acts carrying angular momentum from de inner parts to the outer regions. With this, we aimed to extend our knowledge about the fundamental mechanisms involved in the formation and dissipation processes of the disk.
99

Pozorování a modelování klasických Be hvězd / Observations and modeling of classical Be stars

Klement, Robert January 2017 (has links)
The brightness and proximity of many classical Be stars makes them perfect laboratories for studying the physics of astrophysical disks. They are also among the most popular targets for optical/IR interferometers, which are able to fully resolve their circumstellar disks, to which much of the recent progress in our understanding of these enigmatic objects is owed. The current consensus is that classical Be stars eject material from the stellar surface into Keplerian orbits, thus forming a disk, whose subsequent evolution is governed by turbulent viscosity, which is the basis of the so-called viscous decretion disk (VDD) model. Among the main results of the present work is arguably the best-constrained model of a particular Be star β CMi. The VDD predictions were confronted also with radio observations, which allowed for the first determination of the physical extent of a Be disk. This result subsequently led to the detection of a binary companion, which is truncating the disk by tidal forces. Extending the sample to include five more targets led to revealing a similar outer disk structure in all of them. The range of explanations includes the most plausible scenario, in which the truncation of Be disks by (unseen) companions is much more common than previously thought.
100

The Structure of Classical Be Star Decretion Disks

Gullingsrud, Allison Danielle January 2020 (has links)
No description available.

Page generated in 0.0515 seconds