• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 7
  • 6
  • 5
  • 2
  • Tagged with
  • 151
  • 103
  • 95
  • 44
  • 43
  • 35
  • 35
  • 30
  • 26
  • 24
  • 23
  • 23
  • 21
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Exocometary gas in the HD 181327 debris ring

Marino, S., Matrà, L., Stark, C., Wyatt, M. C., Casassus, S., Kennedy, G., Rodriguez, D., Zuckerman, B., Perez, S., Dent, W. R. F., Kuchner, M., Hughes, A. M., Schneider, G., Steele, A., Roberge, A., Donaldson, J., Nesvold, E. 11 August 2016 (has links)
An increasing number of observations have shown that gaseous debris discs are not an exception. However, until now, we only knew of cases around A stars. Here we present the first detection of (CO)-C-12 (2-1) disc emission around an F star, HD 181327, obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) observations at 1.3 mm. The continuum and CO emission are resolved into an axisymmetric disc with ring-like morphology. Using a Markov chain Monte Carlo method coupled with radiative transfer calculations, we study the dust and CO mass distribution. We find the dust is distributed in a ring with a radius of 86.0 +/- 0.4 au and a radial width of 23.2 +/- 1.0 au. At this frequency, the ring radius is smaller than in the optical, revealing grain size segregation expected due to radiation pressure. We also report on the detection of low-level continuum emission beyond the main ring out to similar to 200 au. We model the CO emission in the non-local thermodynamic equilibrium regime and we find that the CO is co-located with the dust, with a total CO gas mass ranging between 1.2 x 10(-6) M-aS center dot and 2.9 x 10(-6) M-aS center dot, depending on the gas kinetic temperature and collisional partners densities. The CO densities and location suggest a secondary origin, i.e. released from icy planetesimals in the ring. We derive a CO+CO2 cometary composition that is consistent with Solar system comets. Due to the low gas densities, it is unlikely that the gas is shaping the dust distribution.
72

Solar abundances of rock-forming elements, extreme oxygen and hydrogen in a young polluted white dwarf

Farihi, J., Koester, D., Zuckerman, B., Vican, L., Gänsicke, B. T., Smith, N., Walth, G., Breedt, E. 11 December 2016 (has links)
The T-eff = 20 800 K white dwarf WD 1536+520 is shown to have broadly solar abundances of the major rock-forming elements O, Mg, Al, Si, Ca, and Fe, together with a strong relative depletion in the volatile elements C and S. In addition to the highest metal abundances observed to date, including log (O/He) = -3.4, the helium-dominated atmosphere has an exceptional hydrogen abundance at log (H/He) = -1.7. Within the uncertainties, the metal-to-metal ratios are consistent with the accretion of an H2O-rich and rocky parent body, an interpretation supported by the anomalously high trace hydrogen. The mixed atmosphere yields unusually short diffusion time-scales for a helium atmosphere white dwarf, of no more than a few hundred years, and equivalent to those in a much cooler, hydrogen-rich star. The overall heavy element abundances of the disrupted parent body deviate modestly from a bulk Earth pattern, and suggest the deposition of some core-like material. The total inferred accretion rate is 4.2 x 10(9) g s(-1), and at least four times higher than for any white dwarf with a comparable diffusion time-scale. Notably, when accretion is exhausted in this system, both metals and hydrogen will become undetectable within roughly 300 Myr, thus supporting a scenario where the trace hydrogen is related to the ongoing accretion of planetary debris.
73

Massive stars dying alone: the extremely remote environment of SN 2009ip

Smith, Nathan, Andrews, Jennifer E., Mauerhan, Jon C. 11 December 2016 (has links)
We present late-time Hubble Space Telescope (HST) images of the site of supernova (SN) 2009ip taken almost 3 yr after its bright 2012 luminosity peak. SN 2009ip is now slightly fainter in broad filters than the progenitor candidate detected by HST in 1999. The current source continues to be dominated by ongoing late-time circumstellar material interaction that produces strong Ha emission and a weak pseudo-continuum, as found previously for 1-2 yr after explosion. The intent of these observations was to search for evidence of recent star formation in the local (similar to 1 kpc; 10 arcsec) environment around SN 2009ip, in the remote outskirts of its host spiral galaxy NGC 7259. We can rule out the presence of any massive star-forming complexes like 30 Dor or the Carina nebula at the SN site or within a few kpc. If the progenitor of SN 2009ip was really a 50-80 M-circle dot star as archival HST images suggested, then it is strange that there is no sign of this type of massive star formation anywhere in the vicinity. A possible explanation is that the progenitor was the product of a merger or binary mass transfer, rejuvenated after a lifetime that was much longer than 4-5 Myr, allowing its natal H II region to have faded. A smaller region like the Orion nebula would be an unresolved but easily detected point source. This is ruled out within similar to 1.5 kpc around SN 2009ip, but a small H II region could be hiding in the glare of SN 2009ip itself. Later images after a few more years have passed are needed to confirm that the progenitor candidate is truly gone and to test for the possibility of a small H II region or cluster at the SN position.
74

Inner mean-motion resonances with eccentric planets: a possible origin for exozodiacal dust clouds

Faramaz, V., Ertel, S., Booth, M., Cuadra, J., Simmonds, C. 21 February 2017 (has links)
High levels of dust have been detected in the immediate vicinity of many stars, both young and old. A promising scenario to explain the presence of this short-lived dust is that these analogues to the zodiacal cloud (or exozodis) are refilled in situ through cometary activity and sublimation. As the reservoir of comets is not expected to be replenished, the presence of these exozodis in old systems has yet to be adequately explained. It was recently suggested that mean-motion resonances with exterior planets on moderately eccentric (e(p) greater than or similar to 0.1) orbits could scatter planetesimals on to cometary orbits with delays of the order of several 100 Myr. Theoretically, this mechanism is also expected to sustain continuous production of active comets once it has started, potentially over Gyr time-scales. We aim here to investigate the ability of this mechanism to generate scattering on to cometary orbits compatible with the production of an exozodi on long time-scales. We combine analytical predictions and complementary numerical N-body simulations to study its characteristics. We show, using order of magnitude estimates, that via this mechanism, low-mass discs comparable to the Kuiper belt could sustain comet scattering at rates compatible with the presence of the exozodis which are detected around Solar-type stars, and on Gyr time-scales. We also find that the levels of dust detected around Vega could be sustained via our proposed mechanism if an eccentric Jupiter-like planet were present exterior to the system's cold debris disc.
75

Detection of Exocometary CO within the 440Myr Old Fomalhaut Belt: A Similar CO+ CO2 Ice Abundance in Exocomets and Solar System Comets

Matra, L., MacGregor, M. A., Kalas, P., Wyatt, M. C., Kennedy, G. M., Wilner, D. J., Duchene, G., Hughes, A. M., Pan, M., Shannon, A., Clampin, M., Fitzgerald, M. P., Graham, J. R., Holland, W. S., Panic, O., Su, K. Y. L. 07 June 2017 (has links)
Recent Atacama Large Millimeter/submillimeter Array observations present mounting evidence for the presence of exocometary gas released within Kuiper Belt analogs around nearby main-sequence stars. This represents a unique opportunity to study their ice reservoir at the younger ages when volatile delivery to planets is most likely to occur. We here present the detection of CO J=2-1 emission colocated with dust emission from the cometary belt in the 440 Myr old Fomalhaut system. Through spectrospatial filtering, we achieve a 5.4s detection and determine that the ring's sky-projected rotation axis matches that of the star. The CO mass derived (0.65-42) x10(-7) M-circle plus is the lowest of any circumstellar disk detected to date and must be of exocometary origin. Using a steady-state model, we estimate the CO+ CO2 mass fraction of exocomets around Fomalhaut to be between 4.6% and 76%, consistent with solar system comets and the two other belts known to host exocometary gas. This is the first indication of a similarity in cometary compositions across planetary systems that may be linked to their formation scenario and is consistent with direct interstellar medium inheritance. In addition, we find tentative evidence that(49 +/- 27)% of the detected flux originates from a region near the eccentric belt's pericenter. If confirmed, the latter may be explained through a recent impact event or CO pericenter glow due to exocometary release within a steady-state collisional cascade. In the latter scenario, we show how the azimuthal dependence of the CO release rate leads to asymmetries in gas observations of eccentric exocometary belts.
76

HERSCHEL OBSERVATIONS AND UPDATED SPECTRAL ENERGY DISTRIBUTIONS OF FIVE SUNLIKE STARS WITH DEBRIS DISKS

Dodson-Robinson, Sarah E., Su, Kate Y. L., Bryden, Geoff, Harvey, Paul, Green, Joel D. 16 December 2016 (has links)
Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R > 100 AU. Here we present new Herschel PACS and re-analyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper belt size to R > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14" along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS PSF size (50% of energy enclosed within radius 4.23"). HD 105211 also has a 24 mu m infrared excess that was previously overlooked because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius a(min) similar to 3 mu m, although the a(min) is larger than the radiation pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of model blackbody disks. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 2 x 10(-5) <= L/L-circle dot <= 2 x 10(-4) , consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.
77

Rise and fall of the dust shell of the classical nova V339 Delphini

Evans, A., Banerjee, D. P. K., Gehrz, R. D., Joshi, V., Ashok, N. M., Ribeiro, V. A. R. M., Darnley, M. J., Woodward, C. E., Sand, D., Marion, G. H., Diamond, T. R., Eyres, S. P. S., Wagner, R. M., Helton, L. A., Starrfield, S., Shenoy, D. P., Krautter, J., Vacca, W. D., Rushton, M. T. 13 January 2017 (has links)
We present infrared spectroscopy of the classical nova V339 Del, obtained over an similar to 2-yr period. The infrared emission lines were initially symmetrical, with half width half-maximum velocities of 525 km s(-1). In later (t greater than or similar to 77 d, where t is the time from outburst) spectra, however, the lines displayed a distinct asymmetry, with a much stronger blue wing, possibly due to obscuration of the receding component by dust. Dust formation commenced at approximately day 34.75 at a condensation temperature of 1480 +/- 20 K, consistent with graphitic carbon. Thereafter, the dust temperature declined with time as T-d alpha t(-0.346), also consistent with graphitic carbon. The mass of dust initially rose, as a result of an increase in grain size and/or number, peaked at approximately day 100, and then declined precipitously. This decline was most likely caused by grain shattering due to electrostatic stress after the dust was exposed to X-radiation. The appendix summarizes Planck means for carbon and the determination of grain mass and radius for a carbon dust shell.
78

Um estudo teórico da evolução temporal das características polarimétricas de estrelas Be / A Theoretical Study of the Polarimetric Characteristics of Be Stars

Mota, Bruno Correia 02 July 2013 (has links)
Estrelas Be são reconhecidas pela sua rápida rotação e pulsação não radial. São as únicas estrelas da Sequência Principal que apresentam discos circunstelares, os quais são formados por meio de processos ainda não completamente compreendidos. A modelagem das forças que atuam neste sistema conduz a previsões teóricas sobre a estrutura do disco que podem ser comparadas com dados observacionais. Podemos estudar as propriedades físicas dos discos de estrelas Be pelo efeito que a luz estelar sofre ao passar por eles, por exemplo, modelando a transferência radiativa. Neste ponto, a polarização surge como uma ferramenta muito útil para a investigação destes discos, permitindo a determinação de quantidades físicas importantes do sistema, como a densidade numérica de partículas e o ângulo de inclinação. Uma variabilidade intrigante observada em estrelas Be é a transição aperiódica entre uma fase B normal (sem disco) e uma fase Be (com disco). Estudos de monitoramento recentes encontraram, a partir da análise da polarização intrínseca decorrente da transição entre estas fases, uma relação significante entre a mudança da polarização através do salto de Balmer versus a polarização na banda V, fazendo surgir uma estrutura em loop como função do tempo, no assim denominado Diagrama Cor-Polarização. Neste trabalho, apresentamos uma análise do Diagrama Cor-Polarização por meio de modelos diversos. Fazemos uso do Disco de Decréscimo Viscoso que é o paradigma atual para explicar a formação e evolução dos discos de estrelas Be. Com isso, visamos determinar como a polarimetria pode contribuir para a compreensão dos mecanismos fundamentais envolvidos no processo de formação e dissipação do disco. / Be stars are recognized by their rapid rotation and non-radial pulsation. They are the only stars in the Main Sequence that have circumstellar disks that are formed by processes not yet fully understood. The modeling of the forces acting on this system leads to theoretical predictions about the structure of the disk that can be compared to observational data. We can study physical the properties of Be disks by modeling how stellar light is reprocessed by them. This requires solving the detailed radiative transfer problem involved. In this point, the study of polarization arise as a useful tool to investigate these disks, allowing for the determination of important physical quantities of the system, such as the particle number density and inclination angle. An intriguing variability observed in Be stars is the aperiodic transition between a B normal phase (without disk) to a Be phase (with disk). Recent monitoring studies found, from the analysis of the intrinsic polarization arising of the transition between these phases, a significant relation between the polarization change through the Balmer jump versus the V-Band polarization, giving rise to a loop structure as a function of time, in the so-called Color-Polarization Diagram. This work presents an analysis of the Color-Polarization Diagram by several models. We make use of the Viscous Decretion Disk Model, which assumes the existence of some injection mechanism of material at keplerian velocities in the disk base, where the turbulent viscosity acts carrying angular momentum from de inner parts to the outer regions. With this, we aimed to extend our knowledge about the fundamental mechanisms involved in the formation and dissipation processes of the disk.
79

Implementing an Algorithm for Spectrum Extraction of Circumstellar Objects with High-Dispersion Spectroscopy

Karlsson, Marcus January 2019 (has links)
In this thesis project, we study the field of high-dispersion spectroscopy and methods for extracting the spectrum of circumstellar objects such as exoplanets from the combined signal of a stellar system. One of the only techniques for detecting absorption lines in exoplanetary atmospheres is to directly image a planet and record the reflected light. However, exoplanets are incredibly faint compared to the parent star and are often completely obscured in any images of the system. We utilize techniques such as high-dispersion spectroscopy (HDS) and high contrast imaging (HCI) in order to capture the planetary signal and develop methods for reducing only the stellar light while leaving the planet relatively untouched.   We investigate a method for removing the scattered starlight by utilizing the separate spectra of the star and the planet, where the signal from the objects will be spread out according to a point spread function (PSF) and laid on top of each other. By empirically determining the shape of the stellar PSF, reference profiles can be created for each wavelength and subtracted from the entire signal, revealing the planetary spectrum. To achieve this, we have constructed a spectrum extraction algorithm, written in Python 3.6, for use on the spectra of directly imaged exoplanetary systems. Additionally, we discuss many of the problems which may arise when reducing cross-dispersed echelle spectra and attempt to solve them with the algorithm.   To assess our algorithm, we utilize spectral images of the system  Pictoris, taken with the high-dispersion spectrograph CRIRES, and three model exoplanetary systems of varying brightness. When extracting the spectrum of the planets, we find that the method employed for constructing the reference stellar PSFs is partially flawed and leaves a substantial amount of residual stellar light in the reduced images. This leads to difficulties with identifying any spectral absorption lines and an alternative method is likely necessary. Nonetheless, the algorithm is found to successfully extract the spectrum and identify spectral lines of an exoplanetary atmosphere if the planet is sufficiently bright, although only for theoretically unrealistic luminosities. We expect that our algorithm can be improved upon with more well-researched methods for reducing the starlight and by using data recorded with spectrographs of even higher dispersive capabilities, such as CRIRES+, METIS, or HIRES.
80

Envoltórios circunstelares de estrelas jovens de massa intermediária / Circumstellar envelopes of intermediate mass young stars

Vieira, Rodrigo Georgetti 20 September 2012 (has links)
As estrelas Herbig Ae/Be (HAeBe) representam os objetos de massa intermediária (2-10 Msol) na pré-sequência principal. Algumas de suas propriedades físicas são pouco compreendidas até o momento. Somente o estudo conjunto das informações fornecidas em diversos comprimentos de onda pode revelar as características do material circunstelar destes objetos. O objetivo deste trabalho de doutorado é analisar sob vários aspectos a estrutura, a composição e a evolução destes ambientes circunstelares. Para realização deste estudo, adotamos a amostra de candidatas a estrelas HAeBe detectadas pelo Pico dos Dias Survey (Vieira et al. 2003). Evitamos as possíveis contaminações desta amostra por estrelas em estágios mais avançados utilizando diagramas de cores, estimativas de extinção e características espectrais. A química da poeira circunstelar foi analisada a partir das propriedades dos espectros ISO disponíveis para nossos objetos. O perfil espectral do silicato em torno de 10 microns revelou características evolutivas do material circunstelar. O status evolutivo dos objetos mais embebidos foi determinado por meio de estimativas da massa de seus envoltórios circunstelares. Este estudo indicou que a maior parte desta sub-amostra se encontra no estágio intermediário entre a Classe 0 (Menv>>M*) e a Classe I (Menv<M*) de estrelas jovens. Detalhes da morfologia do disco de PDS340 foram analisados por imagens no infravermelho-médio, obtidas em bancos de dados. Estas observações impuseram vínculos à extensão e orientação espacial do disco nesta faixa espectral. As observações disponíveis em vários comprimentos de onda revelaram características da estrutura e evolução do material circunstelar associado a estrelas HAeBe. A perspectiva do desenvolvimento de um modelo completo que abranja todas estas informações é descrita na conclusão do trabalho. / Herbig Ae/Be (HAeBe) objects are intermediate mass (2 -10 Msun) stars in the pre-main sequence. Some of their properties remain not well understood to date. Only a full multi-wavelength study is able to reveal a reasonable scenario for their circumstellar material. The purpose of the present work is to study the structure, composition and evolution of these circumstellar environments. To address this issues, the sample of HAeBe candidates detected by the Pico dos Dias Survey (Vieira et al., 2003) was adopted. To avoid the contamination by more evolved stars, we developed an analysis based on two-color diagrams, extinction values and spectral features. The chemistry of the circumstellar dust was studied based on Infrared Space Observatory spectra available to our sample. The silicate feature around 10 micron revealed evolutionary information of the circumstellar material. The evolutionary stage of the more embedded sources was determined by estimates of their envelope masses. This study indicates almost all of this sub-sample to be in the intermediate phase between Class 0 (Menv>>Msun) and Class I (Menv<Msun). Mid-infrared images, retrieved from archive data, introduced morphological constraints to the orientation and extension of the disk associated to PDS340. The available observations for several wavelengths revealed some characteristics of the structure and evolution of the circumstellar material associated to HAeBe stars. The perspective of the development of a complete model, which encompasses all the available data, is described in the conclusion of this work.

Page generated in 0.0586 seconds