• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 7
  • 6
  • 5
  • 2
  • Tagged with
  • 151
  • 103
  • 95
  • 44
  • 43
  • 35
  • 35
  • 30
  • 26
  • 24
  • 23
  • 23
  • 21
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Ancient eruptions of η Carinae: a tale written in proper motions

Kiminki, Megan M., Reiter, Megan, Smith, Nathan 21 November 2016 (has links)
We analyse eight epochs of Hubble Space Telescope H alpha+[N ii] imaging of eta Carinae's outer ejecta. Proper motions of nearly 800 knots reveal that the detected ejecta are divided into three apparent age groups, dating to around 1250 A.D., to around 1550 A.D., and to during or shortly before the Great Eruption of the 1840s. Ejecta from these groups reside in different locations and provide a firm constraint that eta Car experienced multiple major eruptions prior to the nineteenth century. The 1250 and 1550 events did not share the same axisymmetry as the Homunculus; the 1250 event was particularly asymmetric, even one-sided. In addition, the ejecta in the S ridge, which have been associated with the Great Eruption, appear to predate the ejection of the Homunculus by several decades. We detect essentially ballistic expansion across multiple epochs. We find no evidence for large-scale deceleration of the observed knots that could power the soft X-ray shell by ploughing into surrounding material, suggesting that the observed X-rays arise instead from fast, rarefied ejecta from the 1840s overtaking the older dense knots. Early deceleration and subsequent coasting cannot explain the origin of the older outer ejecta - significant episodic mass loss prior to the nineteenth century is required. The time-scale and geometry of the past eruptions provide important constraints for any theoretical physical mechanisms driving eta Car's behaviour. Non-repeating mechanisms such as the merger of a close binary in a triple system would require additional complexities to explain the observations.
32

Incidence of debris discs around FGK stars in the solar neighbourhood

Montesinos, B., Eiroa, C., Krivov, A. V., Marshall, J. P., Pilbratt, G. L., Liseau, R., Mora, A., Maldonado, J., Wolf, S., Ertel, S., Bayo, A., Augereau, J.-C., Heras, A. M., Fridlund, M., Danchi, W. C., Solano, E., Kirchschlager, F., del Burgo, C., Montes, D. 19 September 2016 (has links)
Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their counterparts in the solar system are the asteroid and Edgeworth-Kuiper belts. Aims. The aim of this paper is to provide robust numbers for the incidence of debris discs around FGK stars in the solar neighbourhood. Methods. The full sample of 177 FGK stars with d <= 20 pc proposed for the DUst around Nearby Stars (DUNES) survey is presented. Herschel/PACS observations at 100 and 160 mu m were obtained, and were complemented in some cases with data at 70 mu m and at 250, 350, and 500 mu m SPIRE photometry. The 123 objects observed by the DUNES collaboration were presented in a previous paper. The remaining 54 stars, shared with the Disc Emission via a Bias-free Reconnaissance in IR and Sub-mm (DEBRIS) consortium and observed by them, and the combined full sample are studied in this paper. The incidence of debris discs per spectral type is analysed and put into context together with other parameters of the sample, like metallicity, rotation and activity, and age. Results. The subsample of 105 stars with d <= 15 pc containing 23 F, 33 G, and 49 K stars is complete for F stars, almost complete for G stars, and contains a substantial number of K stars from which we draw solid conclusions on objects of this spectral type. The incidence rates of debris discs per spectral type are 0.26(-0.14)(+0.21) (6 objects with excesses out of 23 F stars), 0.21(-0.11)(+0.17) (7 out of 33 G stars), and 0.20(-0.09)(+0.14) (10 out of 49 K stars); the fraction for all three spectral types together is 0.22(-0.07)(+0.08) (23 out of 105 stars). The uncertainties correspond to a 95% confidence level. The medians of the upper limits of L-dust/L-* for each spectral type are 7.8 x 10(-7) (F), 1.4 x 10(-6) (G), and 2.2 x 10(-6) (K); the lowest values are around 4.0 x 10(-7). The incidence of debris discs is similar for active (young) and inactive (old) stars. The fractional luminosity tends to drop with increasing age, as expected from collisional erosion of the debris belts.
33

A COMPREHENSIVE DUST MODEL APPLIED TO THE RESOLVED BETA PICTORIS DEBRIS DISK FROM OPTICAL TO RADIO WAVELENGTHS

Ballering, Nicholas P., Su, Kate Y. L., Rieke, George H., Gáspár, András 27 May 2016 (has links)
We investigate whether varying the dust composition (described by the optical constants) can solve a persistent problem in debris disk modeling-the inability to fit the thermal emission without overpredicting the scattered light. We model five images of the beta Pictoris disk: two in scattered light from the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph at 0.58 mu m and HST/Wide Field Camera 3 (WFC 3) at 1.16 mu m, and three in thermal emission from Spitzer/Multiband Imaging Photometer for Spitzer (MIPS) at 24 mu m, Herschel/PACS at 70 mu m, and Atacama Large Millimeter/submillimeter Array at 870 mu m. The WFC3 and MIPS data are published here for the first time. We focus our modeling on the outer part of this disk, consisting of a parent body ring and a halo of small grains. First, we confirm that a model using astronomical silicates cannot simultaneously fit the thermal and scattered light data. Next, we use a simple generic function for the optical constants to show that varying the dust composition can improve the fit substantially. Finally, we model the dust as a mixture of the most plausible debris constituents: astronomical silicates, water ice, organic refractory material, and vacuum. We achieve a good fit to all data sets with grains composed predominantly of silicates and organics, while ice and vacuum are, at most, present in small amounts. This composition is similar to one derived from previous work on the HR 4796A disk. Our model also fits the thermal spectral energy distribution, scattered light colors, and high-resolution mid-IR data from T-ReCS for this disk. Additionally, we show that sub-blowout grains are a necessary component of the halo.
34

THE CORRELATION BETWEEN METALLICITY AND DEBRIS DISK MASS

Gáspár, András, Rieke, George H., Ballering, Nicholas 29 July 2016 (has links)
We find that the initial dust masses in planetary debris disks are correlated with the metallicities of their central stars. We compiled a large sample of systems, including Spitzer, the Herschel DUNES and DEBRIS surveys, and WISE debris disk candidates. We also merged 33 metallicity catalogs to provide homogeneous [Fe/H] and sigma([Fe/H]) values. We analyzed this merged sample, including 222 detected disks (74 warm and 148 cold) around a total of 187 systems (some with multiple components) and 440 disks with only upper limits (125 warm and 315 cold) around a total of 360 systems. The disk dust masses at a common early evolutionary point in time were determined using our numerical disk evolutionary code, evolving a unique model for each of the 662 disks backward to an age of 1 Myr. We find that disk-bearing stars seldom have metallicities less than [Fe/H] = -0.2 and that the distribution of warm component masses lacks examples with large mass around stars of low metallicity ([Fe/H] < -0.085). Previous efforts to find a correlation have been largely unsuccessful; the primary improvements supporting our result are (1) basing the study on dust masses, not just infrared excess detections; (2) including upper limits on dust mass in a quantitative way; (3) accounting for the evolution of debris disk excesses as systems age; (4) accounting fully for the range of uncertainties in metallicity measurements; and (5) having a statistically large enough sample.
35

ALMA MEASUREMENTS OF CIRCUMSTELLAR MATERIAL IN THE GQ LUP SYSTEM

MacGregor, Meredith A., Wilner, David J., Czekala, Ian, Andrews, Sean M., Dai, Y. Sophia, Herczeg, Gregory J., Kratter, Kaitlin M., Kraus, Adam L., Ricci, Luca, Testi, Leonardo 16 January 2017 (has links)
We present Atacama Large Millimeter/submillimeter Array observations of the GQ Lup system, a young Sun-like star with a substellar-mass companion in a wide-separation orbit. These observations of 870 mu m continuum and CO J = 3-2 line emission with beam size similar to 0."3 (similar to 45 au) resolve the disk of dust and gas surrounding the primary star, GQ Lup A, and provide deep limits on any circumplanetary disk surrounding the companion, GQ Lup b. The circumprimary dust disk is compact with an FWHM of 59 +/- 12 au, while the gas has a larger extent with a characteristic radius of 46.5 +/- 1.8 au. By forward-modeling the velocity field of the circumprimary disk based on the CO emission, we constrain the mass of GQ Lup. A to be M-* = (1.03 +/- 0.05) * (d/156 pc) M-circle dot, where d is a known distance, and determine that we view the disk at an inclination angle of 60 degrees 5 +/- 0 degrees 5 and a position angle of 346 degrees +/- 1 degrees. The 3s upper limit on the 870 mu m flux density of any circumplanetary disk associated with GQ Lup b of <0.15 mJy implies an upper limit on the dust disk mass of <0.04M(circle dot) for standard assumptions about optically thin emission. We discuss proposed mechanisms for the formation of wide-separation substellar companions given the non-detection of circumplanetary disks around GQ Lup b and other similar systems.
36

Discovery of a low-mass companion inside the debris ring surrounding the F5V star HD 206893

Milli, J., Hibon, P., Christiaens, V., Choquet, É., Bonnefoy, M., Kennedy, G. M., Wyatt, M. C., Absil, O., Gómez González, C. A., del Burgo, C., Matrà, L., Augereau, J.-C., Boccaletti, A., Delacroix, C., Ertel, S., Dent, W. R. F., Forsberg, P., Fusco, T., Girard, J. H., Habraken, S., Huby, E., Karlsson, M., Lagrange, A.-M., Mawet, D., Mouillet, D., Perrin, M., Pinte, C., Pueyo, L., Reyes, C., Soummer, R., Surdej, J., Tarricq, Y., Wahhaj, Z. 19 December 2016 (has links)
Aims. Uncovering the ingredients and the architecture of planetary systems is a very active field of research that has fuelled many new theories on giant planet formation, migration, composition, and interaction with the circumstellar environment. We aim at discovering and studying new such systems, to further expand our knowledge of how low-mass companions form and evolve. Methods. We obtained high-contrast H-band images of the circumstellar environment of the F5V star HD 206893, known to host a debris disc never detected in scattered light. These observations are part of the SPHERE High Angular Resolution Debris Disc Survey (SHARDDS) using the InfraRed Dual-band Imager and Spectrograph (IRDIS) installed on VLT/SPHERE. Results. We report the detection of a source with a contrast of 3 : 6 x 10(-5) in the H-band, orbiting at a projected separation of 270 milliarcsec or 10 au, corresponding to a mass in the range 24 to 73 M-Jup for an age of the system in the range 0.2 to 2 Gyr. The detection was confirmed ten months later with VLT /NaCo, ruling out a background object with no proper motion. A faint extended emission compatible with the disc scattered light signal is also observed. Conclusions. The detection of a low-mass companion inside a massive debris disc makes this system an analog of other young planetary systems such as beta Pictoris, HR 8799 or HD 95086 and requires now further characterisation of both components to understand their interactions.
37

Star formation in the Auriga-California Giant Molecular Cloud and its circumstellar disk population

Broekhoven-Fiene, Hannah 02 May 2016 (has links)
This thesis presents a multiwavelength analysis, from the infrared to the microwave, of the young, forming stars in the Auriga-California Molecular Cloud and a first look at the disks they host and their potential for forming planetary systems. At the beginning of this thesis, Auriga-Cal had only recently been identified as one contiguous cloud with its distance placing it within the Gould Belt of nearby star-forming regions (Lada et al. 2009). This thesis presents the largest body of work to date on Auriga-Cal's star formation and disk population. Auriga-Cal is one of two nearby giant molecular clouds (GMCs) in the Gould Belt, the other being the Orion A molecular cloud. These two GMCs have similar mass (~10^5 Msolar), spatial scale (~80 pc), distance (~450 pc), and filamentary morphology, yet the two clouds present very different star formation qualities and quantities. Namely, Auriga-Cal is forming far fewer stars and does not exhibit the high-mass star formation seen in Orion A. In this thesis, I present a census of the star forming objects in the infrared with the Spitzer Space Telescope showing that Auriga-Cal contains at least 166 young stellar objects (YSOs), 15-20x fewer stars than Orion A, the majority of which are located in the cluster around LkHalpha 101, NGC 1529, and the filament extending from it. I find the submillimetre census with the James Clerk Maxwell Telescope, sensitive to the youngest objects, arrives at a similar result showing the disparity between the two clouds observed in the infrared continues to the submillimetre. Therefore the relative star formation rate between the two clouds has remained constant in recent times. The final chapter introduces the first study targeted at the disk population to measure the formation potential of planetary systems around the young stars in Auriga-Cal. The dust thermal emission at cm wavelengths is observed to measure the relative amounts of cm-sized grains, indicative of the grain growth processes that take place in disks and are necessary for planet formation. For a subsample of our targets, we are able to measure the spectral slope in the cm to confirm the thermal nature of the observed emission that we detect and characterize the signature of grain growth. The sensitivity of our observations probes masses greater than the minimum mass solar nebula (MMSN), the disk mass required to form the Solar System. We detect 19 disks, representing almost a third of our sample, comparable to the numbers of disks in other nearby star-forming regions with disks masses exceeding the MMSN, suggesting that the disk population in Auriga-Cal possesses similar planet formation potential as populations in other clouds. Confirmation of this result requires future observations with mm interferometry, the wavelength regime where the majority of statistics of disks has been measured. / Graduate
38

A Complete ALMA Map of the Fomalhaut Debris Disk

MacGregor, Meredith A., Matra, Luca, Kalas, Paul, Wilner, David J., Pan, Margaret, Kennedy, Grant M., Wyatt, Mark C., Duchene, Gaspard, Hughes, A. Meredith, Rieke, George H., Clampin, Mark, Fitzgerald, Michael P., Graham, James R., Holland, Wayne S., Panic, Olja, Shannon, Andrew, Su, Kate 07 June 2017 (has links)
We present ALMA mosaic observations at 1.3. mm (223 GHz) of the Fomalhaut system with a sensitivity of 14 mu Jy/beam. These observations provide the first millimeter map of the continuum dust emission from the complete outer debris disk with uniform sensitivity, enabling the first conclusive detection of apocenter glow. We adopt an MCMC modeling approach that accounts for the eccentric orbital parameters of a collection of particles within the disk. The outer belt is radially confined with an inner edge of 136.3 +/- 0.9. au and width of 13.5 +/- 1.8. au. We determine a best-fit eccentricity of 0.12 +/- 0.01. Assuming a size distribution power-law index of q. =. 3.46 +/- 0.09, we constrain the dust absorptivity power-law index a to be 0.9 <beta <. 1.5. The geometry of the disk is robustly constrained with inclination 65 degrees. 6 +/- 0 degrees. 3, position angle 337 degrees 9 +/- 0 degrees.3, and argument of periastron 22 degrees.5 +/- 4 degrees. 3. Our observations do not confirm any of the azimuthal features found in previous imaging studies of the disk with Hubble Space Telescope, SCUBA, and ALMA. However, we cannot rule out structures. 10 au in size or that only affect smaller grains. The central star is clearly detected with a flux density of 0.75 +/- 0.02. mJy, significantly lower than predicted by current photospheric models. We discuss the implications of these observations for the directly imaged Fomalhaut b and the inner dust belt detected at infrared wavelengths.
39

A CANDIDATE PLANETARY-MASS OBJECT WITH A PHOTOEVAPORATING DISK IN ORION

Fang, Min, Kim, Jinyoung Serena, Pascucci, Ilaria, Apai, Dániel, Manara, Carlo Felice 12 December 2016 (has links)
In this work, we report the discovery of a candidate planetary-mass object with a photoevaporating protoplanetary disk, Proplyd. 133-353, which is near the massive star theta(1) Ori C at the center of the Orion Nebula Cluster (ONC). The object was known to have extended emission pointing away from theta(1) Ori. C, indicating ongoing external photoevaporation. Our near-infrared spectroscopic data and the location on the H-R diagram suggest that the central source of Proplyd. 133-353 is substellar (similar to M9.5) and has a mass probably less than 13 Jupiter mass and an age younger than 0.5 Myr. Proplyd. 133-353 shows a similar ratio of X-ray luminosity to stellar luminosity to other young stars in the ONC with a similar stellar luminosity and has a similar proper motion to the mean one of confirmed ONC members. We propose that Proplyd. 133-353 formed in a very low-mass dusty cloud or an evaporating gas globule near theta(1) Ori C as a second generation of star formation, which can explain both its young age and the presence of its disk.
40

Exocomet signatures around the A-shell star φ Leonis?

Eiroa, C., Rebollido, I., Montesinos, B., Villaver, E., Absil, O., Henning, Th., Bayo, A., Canovas, H., Carmona, A., Chen, Ch., Ertel, S., Iglesias, D. P., Launhardt, R., Maldonado, J., Meeus, G., Moór, A., Mora, A., Mustill, A. J., Olofsson, J., Riviere-Marichalar, P., Roberge, A. 10 October 2016 (has links)
We present an intensive monitoring of high-resolution spectra of the Ca II K line in the A7IV shell star phi Leo at very short (minutes, hours), short (night to night), and medium (weeks, months) timescales. The spectra show remarkable variable absorptions on timescales of hours, days, and months. The characteristics of these sporadic events are very similar to most that are observed toward the debris disk host star beta Pic, which are commonly interpreted as signs of the evaporation of solid, comet-like bodies grazing or falling onto the star. Therefore, our results suggest the presence of solid bodies around phi Leo. To our knowledge, with the exception of beta Pic, our monitoring has the best time resolution at the mentioned timescales for a star with events attributed to exocomets. Assuming the cometary scenario and considering the timescales of our monitoring, our results indicate that phi Leo presents the richest environment with comet-like events known to date, second only to beta Pic.

Page generated in 0.0565 seconds