• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 52
  • 27
  • 19
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 224
  • 43
  • 40
  • 39
  • 32
  • 29
  • 28
  • 28
  • 25
  • 25
  • 25
  • 24
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

In-Situ TiC-Fe Deposition on Mild Steel Using a Laser Cladding Process

Emamian, Ali 26 July 2011 (has links)
The growing interest in increasing the wear resistance and hardness of surfaces that are in contact with abrasives or corrosive materials has inspired the development of several processes for creating protective coatings. In-situ laser cladding is one of the most promising of these processes. It enables the formation of a uniform coating by melting powder to form the desired composition from a pure powder component. In this research, pure Ti, graphite, and Fe are used for in-situ laser cladding on a steel substrate to form an Fe-TiC metal matrix composite (MMC). The effect of laser parameters on both the quality of the bonding and morphology of the in-situ-formed TiC iron-based composite clad are investigated. Results show that laser parameters play a crucial role in determining the clad quality and clad microstructure. Two combined parameters, effective energy and powder deposition density, are used to study the effect of laser parameters (i.e., laser power, scan speed and powder feed rate) on the clad properties. While results indicate that combined parameters help to determine the quality limit, laser process parameters need to be taken into account in order to study the clad microstructure. To increase the clad hardness and TiC volume fraction, C:Ti atomic ratio should increase from 45:55 to 55:45, and Fe percentages in the powder composition should decrease from 70 wt% to the 10 wt%. By varying the powder composition, a change in TiC morphology, clad microstructure and clad hardness occurs. The dilution effect is also considered in the interpretation of results. In order to estimate wear resistance, the ASTM G65-A procedure was selected to perform tests on various clad compositions. An increased wear resistance is seen when the volume fraction of TiC is increased.
32

1.3£gm quantum dot-in-a-well laser

Lin, Ting-Yu 14 July 2011 (has links)
The purpose of this thesis is to fabricate 12-layer In0.75Ga0.25As quantum dot-in-a-well (In0.1Ga0.9As) structures grown by molecular-beam epitaxy (MBE) on GaAs substrate, and analyze the optical properties of laser devices for optical fiber communication systems. For the laser structures, larger Al content AlGaAs cladding layer enhance the optical confinement, but encounter much challenges to improve the quality. After we simulate and fabricate different Al content laser structures, we find the best cladding layer composition - Al0.2Ga0.8As which performs a best material gain. In the active layer, 12 layers In0.75Ga0.25As quantum dots (QDs) and QDs in a well (DWell) structure, and DWell with Be-doping in the well structure are included in this study. The well structure slows down the hot carriers speed and Be-doping decrease the carrier life time and increases the electron-hole pair recombination rate. We increase the QDs deposition coverage to move the emission wavelength to 1.3£gm, but the high temperature cladding layer growth process indirectly anneal the QDs and result in the emission wavelength blue shift to 1.24£gm. In the laser fabrication, to transport the light wave in smaller dispersion loss single mode waveguide, wet etching photolithography processes are adapted in this study to fabricate 2£gm width ridge waveguide. The as-cleaved facets are used as Fabry-Perot laser mirrors in ridge waveguide lasers. Finally, the current density of QD Laser(C528) lasing in CW mode is 581A/cm2, slope efficiency of 510mW/A and maximum power/facet of 65mW are obtained.Then the current density of DWELL+PD Laser(C540) lasing in CW mode is 880A/cm2, slope efficiency of 430mW/A and maximum power/facet of 34mW are obtained.
33

Influence of nonstructural cladding on dynamic properties and performance of highrise buildings

Palsson, Hafsteinn 12 1900 (has links)
No description available.
34

Three dimensional nonlinear dynamic response of an RC structure with advanced cladding

El-Gazairly, Loai F. 05 1900 (has links)
No description available.
35

In-Situ TiC-Fe Deposition on Mild Steel Using a Laser Cladding Process

Emamian, Ali 26 July 2011 (has links)
The growing interest in increasing the wear resistance and hardness of surfaces that are in contact with abrasives or corrosive materials has inspired the development of several processes for creating protective coatings. In-situ laser cladding is one of the most promising of these processes. It enables the formation of a uniform coating by melting powder to form the desired composition from a pure powder component. In this research, pure Ti, graphite, and Fe are used for in-situ laser cladding on a steel substrate to form an Fe-TiC metal matrix composite (MMC). The effect of laser parameters on both the quality of the bonding and morphology of the in-situ-formed TiC iron-based composite clad are investigated. Results show that laser parameters play a crucial role in determining the clad quality and clad microstructure. Two combined parameters, effective energy and powder deposition density, are used to study the effect of laser parameters (i.e., laser power, scan speed and powder feed rate) on the clad properties. While results indicate that combined parameters help to determine the quality limit, laser process parameters need to be taken into account in order to study the clad microstructure. To increase the clad hardness and TiC volume fraction, C:Ti atomic ratio should increase from 45:55 to 55:45, and Fe percentages in the powder composition should decrease from 70 wt% to the 10 wt%. By varying the powder composition, a change in TiC morphology, clad microstructure and clad hardness occurs. The dilution effect is also considered in the interpretation of results. In order to estimate wear resistance, the ASTM G65-A procedure was selected to perform tests on various clad compositions. An increased wear resistance is seen when the volume fraction of TiC is increased.
36

Stiffening effect of cladding on light-weight structures /

Lawrence, S. J. January 1972 (has links) (PDF)
Thesis (M.Eng.Sc.)--University of Adelaide, Dept. of Civil Engineering, 1974. / "January 1972." Includes bibliographical references.
37

Desenvolvimento de processos de reciclagem de cavacos de Zircaloy via refusão em forno elétrico a arco e metalurgia do pó / Development of processes for zircaloy chips recycling by electric arc furnace remelting and powder metallurgy

PEREIRA, LUIZ A.T. 21 January 2015 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2015-01-21T10:18:45Z No. of bitstreams: 0 / Made available in DSpace on 2015-01-21T10:18:45Z (GMT). No. of bitstreams: 0 / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
38

Laser cladding surface treatment for enhancement of mechanical properties

Yang, Wen Fu January 2003 (has links)
Thesis (MTech (Mechanical Engineering))--Peninsula Technikon, 2003 / Systematic laser cladding experiments were performed using a mixture of a Nickel base alloy powder mixed with tungsten carbide powder (percentage contents of tungsten carbide from 10% to 40%) on EN8 steel substrate with pre-placed powder method. Laser cladding of the Nickel base alloy powder + 50% tungsten carbide powder on EN9 steel substrate was performed with powder injection method as well. A Finite Element Method for calculating the surface temperature distribution was used to help prediction of temperature distribution laser cladding results. Composition of cladding materials was designed; a sticking agent was chosen for the pre-placed powder method. Clad coatings were obtained for different process parameters for laser cladding, and a detailed study of the affects of these parameters has been carried out. The characteristic microstructure and properties of the clad layers and interface were investigated by using an optical microscope, a micro hardness tester and a makeshift wear test. A comprehensive review is presented on the dilution of the coating and the typical problems experienced with the coating substrate interface. The results show that microstructure of clad layers comprise three zones: the cladding layer, bonding zone and heat-affected zone. The results showed that tungsten carbide particles increased the hardness and wear resistance as expected. Wear resistance of laser cladding coating is 3.5 times than that of substrate. The micro hardness range of the cladding layer is from RV 981.5 to RV 1187, which is 2-3 times than that of substrate. The micro hardness varies from cladding coating to transition layer then to heat affected zone and substrate along a gradient.
39

Desenvolvimento de processos de reciclagem de cavacos de Zircaloy via refusão em forno elétrico a arco e metalurgia do pó / Development of processes for zircaloy chips recycling by electric arc furnace remelting and powder metallurgy

PEREIRA, LUIZ A.T. 21 January 2015 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2015-01-21T10:18:45Z No. of bitstreams: 0 / Made available in DSpace on 2015-01-21T10:18:45Z (GMT). No. of bitstreams: 0 / Reatores PWR empregam, como combustível nuclear, pastilhas de UO2 acondicionadas em tubos de ligas de zircônio, chamados de encamisamento. Na sua fabricação são gerados cavacos de usinagem que não podem ser descartados, pois a reciclagem deste material é estratégica quanto aos aspectos de tecnologia nuclear, econômicos e ambientais. As ligas nucleares têm altíssimo custo e não são produzidas no Brasil, sendo importadas para a fabricação do combustível nuclear. Neste trabalho são abordados dois métodos para reciclar os cavacos de Zircaloy. No primeiro, os cavacos foram fundidos utilizando um forno elétrico a arco para obter lingotes. O segundo usa a técnica da metalurgia do pó, onde os cavacos foram submetidos à hidretação e o pó resultante foi moído e isostaticamente prensado e, a seguir, sinterizado a vácuo. A composição química, as fases presentes e a dureza no material foram determinadas. Os lingotes foram tratados termicamente e laminados, sendo que as microestruturas foram caracterizadas por microscopia óptica e eletrônica de varredura. Os resultados para ambos os métodos mostraram que a composição do Zircaloy reciclado cumpre as especificações químicas e apresentaram microestrutura adequada para uso nuclear. Os bons resultados do método de metalurgia do pó sugerem a possibilidade de produzir pequenas peças, como as tampas do encamisamento - end-caps, usando a sinterização no formato quase final (near net shape). / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
40

In-situ alloying of AISI 410L martensitic stainless steel with nitrogen during laser cladding

van Niekerk, Cornelis Janse January 2016 (has links)
The feasibility of in-situ alloying of AISI 410L martensitic stainless steel with nitrogen during Nd-YAG laser cladding was investigated with the aim of achieving a nitrogen content of at least 0.08 wt% and fully martensitic microstructures in the final clad deposit. Two in-situ nitrogen alloying techniques were studied. In the first set of experiments, the absorption of nitrogen from nitrogen-rich gas atmospheres was studied. Laser cladding with commercially available AISI 410L powder was performed using nitrogen-rich shielding and carrier gas. A marginal increase in deposit nitrogen content was observed, with the clad deposit displaying low hardness and mostly ferritic microstructures. Poor nitrogen absorption from nitrogen-containing atmospheres during Nd-YAG laser cladding is generally attributed to the short thermal cycle and to suppression of plasma formation above the weld pool. In the remaining experiments, Si3N4 powder was investigated as an alternative source for nitrogen during cladding. The addition of Si3N4 to the AISI 410L powder feed resulted in clad microstructures consisted of columnar -ferrite grains with martensite on the grain boundaries, higher hardness and an increase in deposit nitrogen content (to a maximum of 0.064 wt% nitrogen). Higher nitrogen contents in the clad deposit, however, significantly increased the volume percentage porosity in the clad layer. This prompted an investigation into the feasibility of raising the nitrogen solubility of the alloy through additions of manganese and nickel to the powder feed. Thermodynamic modelling revealed that the addition of manganese to AISI 410L powder increases the nitrogen solubility limit due to its negative interaction parameter with nitrogen. The addition of up to 3.5 wt% manganese to AISI 410L powder containing Si3N4 significantly increased the nitrogen solubility in the deposit. A martensitic microstructure with 0.12 wt% nitrogen and a peak hardness of 410 HV was achieved without any adverse increase in porosity in the clad layer. The clad nitrogen content easily exceeded the minimum requirement of 0.08 wt%. High nickel concentrations in AISI 410L stainless steel expand the austenite phase field at the expense of -ferrite and alter the solidification mode from ferritic to austenitic-ferritic. The addition of up to 5.5 wt% nickel, or combinations of nickel and manganese, to the nitrogen-alloyed AISI 410L powder feed raised the deposit nitrogen content, but not to the same extent as those deposits alloyed with manganese only. Since more austenite is present on cooling in nickel-alloyed AISI 410L deposits, less nitrogen is rejected to the liquid phase on solidification, resulting in higher nitrogen contents and less porosity in the room temperature microstructures. The amount of dilution during single-track laser cladding is mainly influenced by the specific energy per unit mass delivered by the laser beam. The clad height is strongly influenced by the powder deposition rate, whereas the bead width is influenced by the wettability of the deposits during laser cladding. During multi-track cladding, the observed percentage porosity is a function of the aspect ratio of the individual beads making up the clad layer, the deposition rate and the clad height. High deposition rates result in thicker layers, increasing the distance that N2 gas bubbles have to travel to escape to the atmosphere, while a high aspect ratio favours interbead porosity. The results suggest that in-situ nitrogen alloying during laser cladding should preferably be performed at low deposition rates to ensure higher clad nitrogen contents and hardness, lower clad heights, less dilution and less porosity. / Dissertation (MEng)--University of Pretoria, 2016. / Materials Science and Metallurgical Engineering / MEng / Unrestricted

Page generated in 0.2487 seconds