• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Herramienta integrada para la curación de proteínas repetidas

Bezerra Brandao Corrales, Manuel Alberto 05 February 2024 (has links)
A finales de los años 1990, se identificó un conjunto de proteínas caracterizadas por tener patrones repetidos en su secuencia, lo que produce una estructura tridimensional repetitiva (Marcotte et al., 1999). Se han clasificado al menos 14% de proteínas encontradas en la naturaleza como repetidas, y presentan un rol crítico en procesos biológicos como la comunicación celular y el reconocimiento molecular (Brunette et al., 2015; Marcotte et al., 1999). Existe un creciente interés en el estudio de las proteínas repetidas debido a sus pliegues estructurales estables, una alta conversación evolutiva y un amplio repertorio de funciones biológicas (Chakrabarty & Parekh, 2022). Además, se estima que una de cada tres proteínas humanas son consideradas repetidas (Jorda & Kajava, 2010). La identificación, clasificación y curación de regiones de repetición en proteínas es un proceso complejo que requiere del procesamiento manual de expertos, gran capacidad computacional y tiempo. Existen diversos avances recientes y relevantes que aplican modelos de aprendizaje automático para la predicción de estructura tridimensional de proteínas y la predicción de clasificación de proteínas repetidas. Este tipo de aplicaciones resultan útiles para este proceso de curación. No obstante, a pesar de que este tipo de software son de libre acceso y de código abierto, no se cuenta con un servicio integrado que contemple las herramientas y bases de datos que soporten la investigación en proteínas repetidas. Por estos motivos, en este proyecto de investigación de plantea, diseña y desarrolla un servicio web integrado para la curación de proteínas repetidas. Con este objetivo, se ha considerado la integración con la base de datos de estructuras terciarias del Protein Data Bank (PDB) y la base de datos de predicciones de estructuras tridimensionales AlphaFold. Asimismo, se ha utilizado un modelo de redes neuronales que permite predecir la probabilidad de clasificación en cada clase de proteína repetida. Finalmente, con esta predicción, se implementó una mejora al algoritmo ReUPred para volver más eficiente el proceso de identificación de regiones y unidades de repetición. Este servicio ha sido desplegado utilizando computación en la nube en la página bioinformática.org de la cual es parte el laboratorio de investigación en Bioinformática de la Pontificia Universidad Católica del Perú. Este servicio permite que los investigadores no requieran contar con alta capacidad de procesamiento computacional para el proceso de curación de proteínas repetidas e integra los resultados totales obtenidos.
2

Identificación y clasificación automática de repeticiones en estructuras de proteínas repetidas

Muroya Tokushima, Luis Fernando 26 January 2022 (has links)
Las proteínas repetidas son proteínas no globulares caracterizadas por la presencia de repeticiones a nivel de secuencia y estructura. Pueden ser de 5 clases, cada una con un número variable de subclases. Estas proteínas son relevantes porque están relacionadas con una diversidad de enfermedades. Su correcta clasificación es parte fundamental para su estudio; sin embargo, la anotación manual de todas las estructuras de proteínas conocidas es una tarea que es logísticamente imposible completar. Por ello, la automatización de esta tarea es muy importante. En el presente trabajo, se desarrolló una herramienta para la identificación y clasificación de repeticiones de clase IV. Esta herramienta fue construida por el acoplamiento de dos módulos: uno de filtro y otro de clasificación. El primero fue construido reutilizando una red neuronal convolucional entrenada para la detección de simetrías rotacionales en la estructura de una proteína. Su uso estuvo fundamentado en el hecho que las repeticiones clase IV son de estructura cerrada, por lo que la presencia de simetrías rotacionales era altamente probable. Para el módulo de clasificación se transformó la información estructural en imágenes, por medio del cálculo y superposición de tres matrices. Estas imágenes fueron usadas para aplicar una técnica de transferencia de aprendizaje a una red Densenet, seleccionada luego de un análisis cualitativo y cuantitativo. Como resultado, el clasificador obtenido logró una exactitud de 89.8% sobre una muestra de 658 cadenas de proteínas. Los anteriores módulos fueron integrados en un servicio web construido sobre Flask. Se construyó una aplicación de una página (SPA) para hacer disponible dicho servicio en una forma amigable con el usuario. Dicha aplicación fue desplegada en la nube para su acceso.
3

Clinical Decision Support Systems for Brain Tumour Diagnosis: Classification and Evaluation Approaches

Vicente Robledo, Javier 15 October 2012 (has links)
A lo largo de las últimas décadas, la disponibilidad cada vez mayor de grandes cantidades de información biomédica ha potenciado el desarrollo de herramientas que permiten extraer e inferir conocimiento. El aumento de tecnologías biomédicas que asisten a los expertos médicos en sus decisiones ha contribuido a la incorporación de un paradigma de medicina basada en la evidencia centrada en el paciente. Las contribuciones de esta Tesis se centran en el desarrollo de herramientas que asisten al médico en su proceso de toma de decisiones en el diagnóstico de tumores cerebrales (TC) mediante Espectros de Resonancia Magnética (ERM). En esta Tesis se contribuye con el desarrollo de clasificadores basados en Reconocimiento de Patrones (RP) entrenados con ERM de pacientes pediátricos y adultos para establecer el tipo y grado del tumor. Estos clasificadores especializados son capaces de aprovechar las diferencias bioquímicas existentes entre los TC infantiles y de adultos. Una de las principales contribuciones de esta Tesis consiste en el desarrollo de modelos de clasificación enfocados a discriminar los tres tipos de tumores cerebrales pediátricos más prevalentes. El cerebelo suele ser una localización habitual de estos tumores, resultando muy difícil distinguir el tipo mediante el uso de Imagen de Resonancia Magnética. Por lo tanto, obtener un alto acierto en la discriminación de astrocitomas pilocíticos, ependimomas y meduloblastomas mediante ERM resulta crucial para establecer una estrategia de cirugía, ya que cada tipo de tumor requiere de unas acciones diferentes si se quiere obtener un buen pronóstico del paciente. Asimismo, esta Tesis contribuye en la extracción de características para ERM mediante el estudio de la combinación de señales de ERM adquiridas en dos tiempos de eco: tiempo de eco corto y tiempo de eco largo; concluyendo que dicha combinación mejora la clasificación de tumores cerebrales pediátricos frente al hecho de usar únicamente los ERM de un / Vicente Robledo, J. (2012). Clinical Decision Support Systems for Brain Tumour Diagnosis: Classification and Evaluation Approaches [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17468
4

Automatic mass segmentation in mammographic images

Oliver i Malagelada, Arnau 11 July 2007 (has links)
Aquesta tesi està emmarcada dins la detecció precoç de masses, un dels símptomes més clars del càncer de mama, en imatges mamogràfiques. Primerament, s'ha fet un anàlisi extensiu dels diferents mètodes de la literatura, concloent que aquests mètodes són dependents de diferent paràmetres: el tamany i la forma de la massa i la densitat de la mama. Així, l'objectiu de la tesi és analitzar, dissenyar i implementar un mètode de detecció robust i independent d'aquests tres paràmetres. Per a tal fi, s'ha construït un patró deformable de la massa a partir de l'anàlisi de masses reals i, a continuació, aquest model és buscat en les imatges seguint un esquema probabilístic, obtenint una sèrie de regions sospitoses. Fent servir l'anàlisi 2DPCA, s'ha construït un algorisme capaç de discernir aquestes regions són realment una massa o no. La densitat de la mama és un paràmetre que s'introdueix de forma natural dins l'algorisme. / This thesis deals with the detection of masses in mammographic images. As a first step, Regions of Interests (ROIs) are detected in the image using templates containing a probabilistic contour shape obtained from training over an annotated set of masses. Firstly, PCA is performed over the training set, and subsequently the template is formed as an average of the gradient of eigenmasses weighted by the top eigenvalues. The template can be deformed according to each eigenmass coefficient. The matching is formulated in a Bayesian framework, where the prior penalizes the deformation, and the likelihood requires template boundaries to agree with image edges. In the second stage, the detected ROIs are classified into being false positives or true positives using 2DPCA, where the new training set now contains ROIs with masses and ROIs with normal tissue. Mass density is incorporated into the whole process by initially classifying the two training sets according to breast density. Methods for breast density estimation are also analyzed and proposed. The results are obtained using different databases and both FROC and ROC analysis demonstrate a better performance of the approach relative to competing methods.

Page generated in 0.063 seconds